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Abstract: Metabolism-repair systems ((M,R)) were introduced by Robert Rosen as an 
abstract representation of cell metabolic activity. The representation was obtained in the 
context of Relational Biology, which means that organization prevails over the physico-
chemical structure of the components involved. This fact was determinant for algebraically 
formalizing (M,R) systems using the theory of categories. 
 Two elements are considered in the construction of (M,R) systems: the metabolic 
activity (M) and the repair functions (R) acting on the unities of the metabolic process.  

The metabolic system M is considered as an input-output system. In the categorical 
representation, inputs and outputs are the objects of the category and the processes 
connecting  these elements are represented by the arrows of the category. 
 Autopoiesis is a concept developed by Humberto Maturana and Francisco Varela in 
order to analyze the nature of living systems. It takes into account the circular organization 
of metabolism and it redefines the concepts of structure and organization.  
 Any system can be decomposed into processes and components, which interact 
through processes to generate other components. The definition of an Autopoietic system 
considers that “it is organized as a bounded network of processes of production, 
transformation and destruction of components that produces the components which: 
a)through their interactions and transformations continuously regenerate and realize the 
network of processes (relations) that produced them and b)constitute it (the machine) as a 
concrete entity in the space in which they  (the components) exist by specifying the 
topological domain of its realization as such a network”.   
 Both concepts were recently connected in a paper of  J.C. Letelier et.al., 
determining that the set of autopoietic systems is a subset of the set of general abstract 
(M,R) systems. In fact, every specific (M,R) system is an autopoietic one, being the 
boundary the main element of autopoietic systems which was not formalized in Rosen's 
representation of (M,R) systems. 
 This paper introduces the definition of the boundary - the physical boundary and the 
functional one - for (M,R) systems in the context of the categorical representation, inducing 
then the same kind of formalization for autopoietic systems. 
 The concept of complete (M,R) system is also introduced as well as evidences for 
the functoriality and universality of the completion process. 
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1.INTRODUCTION 
 This paper is about metabolism. The concept of metabolism cannot be separated 
from the definition of life. It concerns the role of matter and energy in real organisms, in 
contrast with other terms which may also be connected with life, such as self-organization, 
emergence, autonomy, growth, development and others.  (Boden 1999). Following Boden, 
“metabolism is a type of material self organization which involves the autonomous use of 
matter and energy in building, growing, developing and maintaining the bodily fabric of a 
living system”.  
 This conception of metabolism is broadly equivalent to the definition of life given 
by Humberto Maturana and Francisco Varela (1980) as “autopoiesis in the physical space”.  
This expression comes from the identification that these authors do of a living system. They 
claim that it is impossible to identify a living system unless it is known what a living 
system is like.  

Main concepts to understand   what a living system is are unity, background, 
organization, structure and space.  

It is considered that an observer defines a unity by specifying the operations of 
distinction that separate a discrete entity from a background. Unities may be simple or 
composite. A composite unity is made of components.  
 The definition of unity implies the definition of  background. They are both 
endowed with the properties that the operations of distinction that separate them specify. 
 Organization refers to the relations between components that define a composite 
unity as one of a particular class. Structure refers to the actual components and relations 
that realize a particular composite unity as a concrete case of a particular class of unities.  
 The domain defined by the properties of a unity in which it can be distinguished is 
the space. A simple unity exists in the space defined by its properties and a composite unity 
exists in the space defined by its components. 
 Autopoietic systems constitute a  class of systems. Their members are composite 
unities conforming a network of production of components which: 

a) through their interactions recursively constitute and realize the network of 
productions that produced them, 

b) constitute the boundaries of the network as components that participate in its 
constitution and realization. 

c) constitute and realize the network as a composite unity in the space in which they 
exist. 

 
     Robert Rosen (1991) also worked on the organization of living systems in the 

context of Relational Biology, concerning with qualitative interactions. He was looking for 
principles which could connect the different physical phenomena  and could express the 
biological unity of the organism and of the organic world as a whole. 

     Rosen studied the cellular system taking into account two elements: the metabolic 
activity (M) – in the cytoplasm of the cell – and the repair functions (R) acting on the 
unities of the metabolic process. The repair functions are connected with the basic functions 
of the nucleus of the cell. (Rosen 1958 a, 1959, 1972).  

     The metabolic system M was conceived as a system consisting of components which 
have inputs and outputs.  A component transforms a set of input materials into a set of 
output materials. Components represent the action of metabolism, producing output 
materials acting on input ones.  



     The simplest such system may be seen in Figure 1. 
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Figure 1 
 

 Here Ma is the component and ρ1 and ρ2 are the input and output of  
Ma, respectively. 
 Naturally, some outputs of one component may be inputs of other components, 

giving block diagrams as the one in figure 2.  
 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 

Figure 2 
 

 In real living systems, the components Mi have a finite life, and then there must be a 
subsystem R, where Ri repairs Mi. The subsystems Ri have then components and input and 
output materials, with the particularity that the output of Ri is the component Mi. 

 The block diagrams were reformulated in terms of abstract block diagrams, which 
allowed the study of the former ones with the formalism of the theory of categories (Rosen 
1958 b, 1959, 1972). 

      Category Theory is a mathematical theory (Eilemberg and Mac Lane 1971).  
 A category has objects and morphisms between them. There must be an identity 

morphism for every object and morphisms may be composed and the composition must be 
associative. A functor associates categories; so, in fact, it associates objects with objects 
and morphisms with morphisms, preserving identities and the composition of morphisms. 
Comparisons between functors are carried out by natural transformations. For details about 
Category Theory the book of Eilemberg and Mac Lane may be consulted. 

 In an abstract block diagram inputs and outputs of a component are the objects of 
the category and the components are represented by the arrows (morphisms). 
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 The abstract block diagram corresponding to Figure 2 may be seen in Figure 3. 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 3 
 
 Formally, in the category of (M,R) systems, if A and B represent the set of inputs 

and outputs to a component, then the metabolic activity is represented by , 
with  the set of arrows connecting with . The repair component is represented 
then by  and the following diagram is obtained: 

 
 

 
with . This means that the output of is the metabolic 

component ( ). 
The next question is: how are these components Ri produced? Rosen found that in these 

systems, a mapping  exists such that , completing a circle given by: 
 

 
 
 Both theories – Autopoiesis and Rosen´s about (M,R) systems were connected by 
Letelier, Marín and Mpodozis (2001). It is concluded there that (M,R) systems have the 
circular organization (operational closure) of autopoietic systems, but there is no element 
suggesting that (M,R) systems can generate a distinguishable unity. Both (M,R) and 
Autopoietic systems produce all the efficient causes needed for their realization and, 
therefore,  Autopoietic systems are included in the class of (M,R) systems. Moreover, any 
specific (M,R) system is an autopoietic one. But (M,R) systems did not have, until now, a 
formalism for the generation of its own border. 
 
 
 

 

 

 

  

  

 

 



 This paper describes a way of introducing the representation for the boundary of 
(M,R) systems in a categorical framework and, by its means, it gives a construction which 
provides a completion for abstract (M,R) systems.      
 
 
2. NEW ASPECTS OF (M,R) SYSTEMS IN CONNECTION WITH AUTOPOIESIS. 
 
2.1.The digraph of an (M,R) system. 
 In a categorical language, an (M,R) system has the following elements: each 
metabolic component is represented by an arrow . 

 
This means that   has outputs. The domain (dom) of each  is: 

 

with , the input of  consisting of the simultaneous input of . 
 The codomain (codom) of each  is an object  representing an output of the 
component . Then 

 
  For each metabolic component  there exists a repair component  represented 
by an arrow . 

 
with the number of outputs of . 

 

 with , being  outputs of the metabolic system (each ). 

The codomain of each is the part of the metabolic process that this  
reproduces. 
 Then: 

  
  is the set of arrows with domain  and codomain . 
 With the elements  an (M,R) system may be represented by a digraph: the 

set of vertices is the set of inputs and outputs of each component and the set of arrows 
is the set of processes (components). 
  The digraph of the (M,R) system is then the digraph of the metabolic system M 
where only the inputs to the corresponding repair components (the domains of ) must 
be identified. It is not necessary to add the output of each repair component , because 
that output is the component itself and it is completely determined. 

     An example of the digraph of an (M,R) system (in fact, the corresponding M 
system) may be seen in figure 4. 

 
 



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
 
 The arrows  were introduced in the representation as theoretical arrows in order to 
identify the connections corresponding to each factor of a Cartesian product. Then  is the 

immersion of  in . 
 Some vertices represent environmental inputs (Aa and Af) or environmental outputs 
(A1, A2, A3 and A4). Following  Rosen, the first ones are those inputs which are not 
produced  by any metabolic activity of the system. The environmental outputs are the ones 
which are not incorporated again to the metabolic activity (Rosen 1972).  
  
2.2.The physical border: inside and outside. 

One of the facts we will use in this paper is the connection between (M,R) systems 
and autopoietic ones. Letelier et.al (2001) showed that every autopoietic system is, at least 
conceptually, an (M,R) system and that after realization, every (M,R) system is autopoietic. 
This result leads to the following property:   
  
Property 1 
Every (M,R) system has a physical border. 
Proof  
As (M,R) systems are autopoietic, then, as such, (M,R) systems must have an operational 
closure and must generate their own border, that is, a physical boundary making of that 
system a distinguishable unity �. 
 

 

 
 
 
 

 
 

 
  

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

    

     

         

   

       



 As the border exists, then through the metabolic activity of the system, some 
elements will cross this border, going from outside to the interior of the system and 
viceversa. To reach the real exterior of the system the functional border must also be 
traversed. 
 In order to describe the traversion of the physical boundary the components (arrows 
in categorical language) of the system must be characterized.  
 Each system and its surrounding environment conforms a network of physical 
elements and components acting on them, to get more physical elements. 
 In the language of categories these physical elements are objects  of the category 
and the components are arrows connecting them: . These components 

represent processes affecting  and producing . In the corresponding digraph, the 
components are the arcs of the digraph and the objects  are the vertices. 
 But not all the processes are of the same kind. We can distinguish three kind of 
processes in (M,R) systems: processes of transformation, translocating processes and 
signals.  
Definition 1: A process is a transformation process if . 
Definition 2: A process is a signal if it exists at least one (but not all) 

such that . 
Definition 3: A process is a translocating  process if . 
 Other resources different from a process like the ones just described may 
participate of the production of .  
 Two facts can be set immediately in order to characterize which elements conform 
the interior of the system and which ones are outside it: 
i) if  is obtained by means of a resource not involving one of the processes , then  
does not belong to the interior of the system. 
ii) if  is obtained by a transformation process , then  belongs to the interior of the 
system. 
 
 Let now be a translocating process. If  is a product of a process of 
transformation, then is an internal process and  and  are internal objects of the 
metabolic network. 
 But  may not be produced by a process of transformation. If  is produced 
through a resource which is not one of these processes  then  is an environmental input 
and traverses the physical boundary. In this case is a border process.  
 If  is produced by a translocating process  then: 

and the physical boundary is traversed by . 
 If is a signal then: 
a)If  is a transformation  process, then is an internal process and are 
internal objects. 



b)If  is not  a transformation process, then is an internal process (modulable) 
and  are external objects. 
 
2.3.The functional border 
 In this interplay and exchange of elements, it clearly appears that the network does 
not end at the physical boundary. We will be also interested in those objects and arrows 
which are outside the physical boundary but they belong to the network as well. This idea 
will lead us to the concept of  functional boundary. 
 The system exchanges different elements with the environment, in direct connection 
with the interior of the metabolic network. Though these elements do not belong to the 
interior of the system they are, for sure, part of the network. We can consider that the 
external world - the world where the observers live - is beyond this functional limit. 
 As it was defined before, the (M,R) system is represented by a directed graph 
(digraph) G which is part of a network of elements related to it.  
 Let be  

                                       
If we define  as the set of in-neighbors of  . Then, if  is adjacent 

to  and there exists an arc . 
In a similar way, if  we define  as the set of out-neighbors of  . Then, 

if  is adjacent to  and there exists an arc . 
 
Definition 4: The functional border of G ( G or LG) is defined in the following way: if is 
a vertex of  LG then  or , . The sets of neighbors (in and out) 
are not empty given the definition of environmental input and output. 
 
Surmise: If two elements of LG are connected, there is an indirect connection through 
elements of G or through elements out of . 
 
Property 2 
If a metabolic network contains its functional border, then it contains its physical border. 
Proof 
In order to define the functional border, environmental inputs , environmental outputs 

and their in-neighbors  and out-neighbors  respectively, 

are identified. Then, if is any other object of the system and there is a walk  from to z 
or from  to  this walk must traverse the physical border. If not, or  would be in 

the interior of the system. This fact is in contradiction with the definition of and   �. 
 
2.4.Going back to categories. 
 Taking into account all the elements involved, a new category of representation is 
defined.  



Let us work in G, the category of (directed) graphs (Mac Lane 1971). Let G be a 
digraph representing an (M,R) system as it was defined before. Then G=(V,A). V is a set of 
objects (vertices) and A is a set of arrows  (arcs). There is a pair of functions from A to 
V: 

  and  
such that and . 
 A morphism  of graphs is a pair of functions  and 

 such that 
 and 

 
 

for every arrow . 
 

As these digraphs represent (M,R) systems following Rosen’s definition and now it 
is considered that each system has a boundary, this element must be incorporated to the 
representation. 

Because of property 2, the functional boundary is a real limit with the external 
world. So,  the representation of an (M,R) system may be the one given by Rosen or may be 
one including the elements of the boundary as well.  

 
 
Definition 5: An (M,R) system is complete if the metabolic network contains its functional 
border. 
 
 The digraph G represents metabolic systems without boundaries. In order to 
represent a complete system, the border must be added.    
 The purpose now is to formalize this completion in a categorical representation. The 
idea follows Harris (1998, 2001). 
 Let be the category of digraphs containing complete and non-complete systems.   
 Let be the subcategory of complete objects (digraphs). Let be the forgetful 
functor (the inclusion) and the identity functor on . A completion operator consists of 
the following: 
i)  A functor  
ii) A natural transformation  
iii)The fact that  (via )is left adjoint to  
 
 By a natural transformation  it is meant that for each object  in , 

 is a map in , and for  in , . Conceptually: any 
object is embedded in its completion, and maps in  are extended to maps of the 
completed objects. 
 By left adjoint it is  meant that for any objects  in  and in , and any map 

, there is a unique map  with . can be ignored 
to have a simpler expression: for any  with already complete, there is a unique 



 with . Conceptually: any map into a complete object extends 
uniquely to the completion of the domain. 
 Left adjoints are unique up to natural equivalences (that is, natural transformations 
consisting of isomorphisms) (Mac Lane 1971). The consequence of this fact is that the 
functor  may be considered “the” completion operator with respect to the notion of 
completion embodied by the subcategory . 
 So, a completion functor  must be defined on a category having both metabolic 
networks and “metabolic networks that have boundaries attached to them”. The next step is 
to show that this boundary is a functorial, natural and universal construction. To 
demonstrate universality it will be shown that this construction is the essentially unique 
way of completing metabolic networks in such a way that any other completion process can 
naturally be compared by means of a map from the boundary defined here to the other 
boundary. 
 The next step is then to define the completion functor . As it is a 
functor, it must be defined on the objects and on the arrows of .  
 If  is an object of , . 
 If  . Then is a morphism between graphs 
in . This means that . Then  and it 
must be defined on the vertices and on the arcs of . 
 Let be a vertex of . Then  . 
 Let now be , the functional border of . If  then  identifies the in-
neighbors of  for  an environmental input of . We take . If 

, we define .  
 If . In this case, we define 

. That is to say: 
 

 

 
 

Now we define on the arcs of  . 
a)If  in the usual way the morphisms of graphs 
are defined. 
b) Let be (The same idea may be applied if ). Then, 
    b1)If  is not related with  (  would be similar), then  and   
         is defined in such a way that:   

 



   b2)If  is related with  (  would be similar), then  and  is   
       defined as in b1). The only difference is that in there,  and in b2) it is   
       . 
 The technical aspects to show  the functoriality and naturality of this construction is 
subject of another paper.  

Let us say some words about universality. To prove universality means that if  is 
any object of ,  is a complete object of any kind and , then there exists one 
and only one  such that  with defined as  
and  if and . 
 By definition, this completion functor  adds all the elements of the functional 
border to the representation of the system. By the surmise made before, no arc is 
completely embedded in this border. If a system  is completed by any other means, it 
must contain the system itself and the elements of the functional border, to begin with. So, 
it must contain the completion of  given by . Then  provides the smallest completion 
that it  can (naturally) be got. 
  
 
3.CONCLUSIONS 
 (M,R) systems were represented with the additional elements coming from the 
condition of being autopoietic systems. The connection between both types of systems has 
the double objective of  incorporating the boundaries to concrete (M,R) systems and 
besides, it provides a way of having a formalization of autopoietic systems within the 
theory of categories. 
 The definition of a new category having as objects metabolic networks allows to use 
categorical tools to analyze them as a unity, incorporating the concept of complete system. 
Until now, though the categorical representation of Rosen in terms of abstract block 
diagrams was useful to analyze characteristics of the relations among the  components of a 
metabolic system,  in the present formulation each system is a unity, it constitutes an object 
in a category and it becomes clearer its condition of autopoietic. Then all its elements may 
be expressed in categorical terms, providing new formal tools of analysis. 
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