Trace-based framework for Experience Management
and Engineering

Julien Laflaquiére?, Lotfi S. Settouti!, Yannick Prié!, Alain Mille!

U LIRIS laboratory, UMR 5205 CNRS, Bat. Nautibus, Université Claude Bernard Lyon 1,
69622 Villeurbanne CEDEX, France

2 Institut Charles Delaunay, University of Technology of Troyes, FRE CNRS
2848, Tech-CICO laboratory, 10010 Troyes CEDEX, France
PhD research supported in part by Champage-Ardenne district grant

{yprie, Isettout, jlaflaqu, amlle}@iris.cnrs.fr

Abstract. The paper deals with experience management in computer-mediated
environments. It particularly focuses on complex tasks whose support relies
more on experience than on knowledge. The presented approach is based on the
“use traces” concept to investigate the “activity reflexivity” as a first step in ex-
perience management, and experience sharing and reusing as possible applica-
tions. The paper also outlines the framework supporting Trace-Based Systems
creation. Traces, trace models and trace life cycle are formally defined. The
main parts of the framework architecture: collecting, transformation, visualiza-
tion, and query systems are also detailed.

1 Introduction

It’s a common to say that computers are widely used, for more and more various and
numerous tasks, usually with a strong documentary dimension. Hence, more and more
activities are performed in computer-mediated environments, to achieve at least in
part these tasks. Such environments are composed of both digital contents and the
tools that allow manipulating them. Among all the challenges that knowledge man-
agement (KM) has to take up, we focus in this paper on complex mediated tasks sup-
port. As we will show, complex tasks have characteristics that make them hold more
onto experience than onto simple knowledge (in the sense of Sun [1]). Taking into
account these characteristics and adopting a specific approach to manage them is a
stake for the emerging young experience management and engineering field [1]. In
particular, we will focus in this paper on the notion of interaction trace for experience
management and experience engineering.

This paper has two main parts. Section 2 outlines why and how one can consider
traces of environment use as a tool to tackle some experience management (EM) ob-
jectives, from the activity reflexivity to the experience reuse. Section 3 describes nec-
essary theoretical concepts towards a generic framework for traces-based systems.

2 Traces for interaction experience management and engineering:
rationale and scenarios

We define a complex task in a computer-mediated environment, as a high level, dy-
namic, open-ended, and strongly context-dependent task. Economic Intelligence (EI)
on the Web is a good example of this type of task [2]: EI related tasks associate diffi-
culties from process-based classical approach of EI and those from complex Web
search tools manipulation (high-level); the tasks are defined step by step during its
realization (dynamic); there is neither exact goal, nor identified means to reach this
goal (open-ended); and overall, the realization of the tasks depends on the context,
here the information found (or not found) during the process (context-dependent).
Because of these characteristics, complex tasks are difficult to formalize and to model,
and consequently, to integrate in a classical KM process.

As a hint towards a possible solution, we investigate the concept of activity reflex-
ivity as a means of making users conscious of their own activity and in a sense con-
scious of the experience they are living. We consider that an activity is reflexive if its
realization provides some information about itself, i.e. leaves an accounted for repre-
sentation of itself. Several research works underline the role played by activity reflex-
ivity for supporting and enhancing the realization of complex tasks [3]. For instance in
Computer Supported Collaborative Learning, reflexivity allows a deeper learning [4]
while in Information Retrieval, it is considered as allowing a better activity structura-
tion, avoiding user’s disorientation [5].

2.1 Traces for reflexivity in computer mediated activity

To obtain activity reflexivity in complex mediated tasks, one has to be able to propose
a kind of activity representation to the user. This representation has to be constructed
from the observation of the mediating environment. Furthermore two opposite general
kinds of approaches can be distinguished. Quantitative approaches are based on log-
files. These log-files, obtained by passive observation, are used to calculate some
statistical insights about the user’s exploitation of his environment, and/or to profile
the user himself [6]. Qualitative approaches are mostly proposed in ethnographic and
ergonomics research studies [7]. These approaches consist in careful observation, in
situ, often completed by audio and video recordings, allowing auto-confrontation for
observed users. Both quantitative and qualitative approaches remain unsatisfactory to
deal with reflexivity: the first are disconnected from miscellaneous contexts in which
activity takes place, while these contexts are fundamental elements of the experience;
the second are time-expensive and are concerned with a very short period of time. We
claim that an intermediate solution is possible, based on use traces of computer-
mediated environment. This is what our Trace-Based Systems aim to do (section 3).

Our main goal is to deal with use traces that “make sense” for the considered user.
The structure of a trace and its abstraction level have to be pertinent, accordingly to
the tasks the user realizes. In other words, the description power of a trace has to cor-
respond to his reflexivity needs.

With this objective in mind, our approach can be broadly decomposed as follows:
a) a modeling of the use is performed, with the user participation and in the context of
a particular task. This allows underlining some salient interaction components called
Objects of interest (entities, events and relations), which are relevant for him, in the
context of Ais use of the environment in the context of his task (there is neither causal
nor hierarchical a priori constraints and objects of interest definitions belong to a use
model) and b) an observer agent is built that can accordingly generate traces from the
interaction between the user and his environment. Such traces are a graph of objects of
interest, where entities and events are linked with relations (see Fig. 1.).

One advantage of this kind of trace is to be “readable” by the user, with an adapted
graph visualization tool (which has a critical and complex role in this context). The
traces outline the activity structure and its global shape. They can give a continuous
representation of the user’s activity in the computer-mediated environment as a his-
toric classic view, but it is not necessarily useful. In fact, a trace can be usefully ex-
ploited to contextualize its proper components. Each object of interest, embedded in
the trace, can be contextualized by the context of its use, i.e. by the role it takes rela-
tively to the other components. To be able to replace each object of interest in its
context is one dimension of activity reflexivity in the computer-mediated environment.

o) . Modify) . [Query |
Ry ey M ”7\ Query | N
Launéh Lqunéh ;[; / Send to Doc3
(Doc1). \ - (Doc3 | o) f
(Doc2) | Contact)
Event | (Entity)| —> Relation

Fig. 1. A part of use trace, as a graph of objects of interest: in this simplistic example, a user of
Human-Links® (EI tool), launches a query with some keywords. He has to modify the query to
obtain a pertinent result, so he sends the document to a contact (other user of the software). For
detailed presentation see [2].

2.2 Traces for experience sharing and reusing

Some applications of our approach have shown that such traces can “make sense” for
users as well as for activity analysts [8]. So, one can examine the question of traces
exploitation towards the initial issue of activity reflexivity. Two problems seem par-
ticularly interesting because they fit with EM purposes: experience share and experi-
ence reuse. Since use traces as the ones we described above can hold a kind of activity
reflexivity (e.g. the interpretation of his own trace by a user), it is possible for a user to
exploit the same traces as a means to share his use/interaction experience. We do not
mean that the trace, or part of it, is the experience, and that we can exchange it directly
(it will probably never be the case). We rather consider the trace as a means, a tool or
a support for experience sharing.

It can be seen as a “boundary object” [9], useful in several well known situations in
KM, when a person has to explain his work face to face with some material supports
(analysis of problem situation in a design project or memory project constitution for
example). Making such use of a trace needs tackling the trace visualization issue. We
do not think as Morse [10] that visualization is the only challenge, but it remains a real
and central problem to deal with real trace-based experience sharing.

In KM and EM fields, another recurrent problem is experience reuse. In our case
we are interested in reusing experience of environment use in a particular task. There
are several ways of dealing with this problem, and we want to underline that we are
just considering one of them. We can extend the approach detailed in section 2.1: in
addition to the objects of interest, we define tasks signatures as patterns in the trace
graph which characterizes a particular task realization. The goal here is not to describe
precisely one pattern for one task, but to be able to know when a particular task oc-
curs. Thanks to tasks signatures, we can extract some significant episodes in the trace.
One episode at least corresponds to one task signature (a web search for example),
and can be considered as reusable piece of use experience. How do we reuse it?

Suppose the user of a computer-mediated environment has a problem and asks his
system for help. The system tries to identify in current use the beginning of a known
signature. Then it can find and present to the user the past episodes that correspond to
this known signature. These episodes, seen as pieces of past use experience, can indi-
cate to the user how in the past he coped with that problem (or not), in a similar task,
maybe in a different context. We stress the fact that this past experience reuse holds
on the user himself: presenting past episodes does not necessarily give a solution; it
can just act as a mnesic help or an inspiration source, a means to facilitate the task at
hand. If no signature is identified the user can define a new one by himself, for the
system to parse the trace and find useful episodes. Here the challenge lies in providing
traces that can be reused to cope with problems that were not determined when the
tracing system was constructed [11].

Through tree examples at different levels (activity reflexivity, experience sharing,
and experience reuse), we have shown Aow a traces-based system could be useful to
support user activity with an EM point of view, and why it opens new perspectives to
instrument EM approaches for complex computer-mediated tasks. The first part of this
paper also gave some clues that suggest the underlying complexity of such systems,
and we therefore have to lean on a rigorous theoretical approach and methodological
tools. This is why we developed the traces-based systems framework. In the following
section, we will describe traces-based systems and sketch the idea of how they could
be used in order to support the trace exploitation process.

3 Towards a Trace-Based System Framework for EME

In order to tackle the traces management challenge, we present a trace-based systems
framework. This framework allows the definition of trace-based systems (TBS), which
holds on traces exploitation, e.g. the production, the transformation and the visualiza-
tion of traces. We will first define our notions of trace and trace lifecycle, before set-
ting up a formal framework for traces-based system.

We introduce traces as temporal sequences of observed items. “Temporal se-
quence” indicates the existence of an order-relation that organizes trace data relatively
to a time base. “Observed items” indicates that trace data result from an observation.
This definition allows us to argue that a trace is a numeric document which reveals
temporally located data resulting from an observation. As shown in section 2, we are
mainly concerned with use traces of computer-mediated environment. In this context,
a trace is considered as a recording of a computer-mediated activity that is potentially
constructed from a variety of sources (log-files, videos, transcripts, etc.).

We divide the trace lifecycle into different stages. Firstly, collecting deals with de-
ciding what to collect and how to collect it into a basic trace. For example, a basic
trace would gather all the events occurring during an interaction as objects of interest.
A basic trace is a TBS entry-level trace. Secondly, transformation deals with auto-
matically or manually filtering, rearranging or adding information to the basic traces
in order to meet the description needs of the user. In our example basic trace, the
collected data can be irrelevant or too detailed: selection transformation can be used
for separating data and sequences of interest from the “noise”, while abstraction
transformation (data aggregation), can be used to provide higher-level objects of
interest to the user. Thirdly, presentation deals with traces visualization and involves
choosing what to present and how to present it to the user. It is important that each of
these stages be considered separately to avoid any confusion.

i Selectiop transf ati
Ba!_%_l_cTrace1 Tronstormod Trate 11] election transformation
o = Transformed Trace 1.2.1
|:> Transformed Trace 1.2 |:>
Transformed Trace 1.2.2

-

hhhhyi

z
didcirfr tt
Transformation

Collect System

- Aggregation transformation
Transformed Trace M.1 |::>
ottt E> Transformed Trace N.3
£ |:> Transformed Trace M.2 |:>

Fig. 2. Traces are collected, transformed and visualized when needed.

3.1 Traces and traces-models

The trace lifecycle will be supported by traces-based systems. Before describing their
various components, it is necessary to present the notion of trace model. In a TBS,
each trace must always be associated to an explicit trace model, which allows its in-
terpretation. A trace model can be considered as a model describing the vocabulary
and the structure of the traces it is associated with. For example, trace log-files often
rely on the Common Logfile Format (CLF), traces XML documents are described by
DTD trace models or schemas, efc. In this work, we will use the ontological model as
a general trace model compatible with models that will actually be instantiated in a
TBS (simple log models, schema-based models, etc.). Formally:

Definition 1: 4 Trace Model is an ontology Mr = (C; <¢; <g; R; T; A; 64, or)
consisting of a set of concepts C organized in a hierarchy with an order relation <c, a
set of relations R organized with <R, a relation signature op : R 2 C x C, a set of
data types T, a set of attributes A, and a attribute signature o,: A 2 Cx T.

The following definition concerns the general formal definition of a trace:

Definition 2: 4 trace is a quintuplet (My,D,,0,,R,, R,) where My is the associated
trace model; D, is a temporal domain (T, <) with T a set of time instants and < an
order on T; O, is a set of objects O, 0,={0,,0,, ...,0,} such as(70; [70O,, f(O;) [JC,
with fa labelling function f:0,2C. R, /D, x D, x O, is a relation representing the
temporal links between objects and time intervals. R, [7 O, x O, is a relation repre-
senting the structural links between objects, and [JR; [JR,, g (Ry) [JC, with g a
labelling function g: R, 2 C.

Trace Model T Obiets O
E ... race iets * Temporal Domain D
OO i R 127.0.0.1

Pemporal retations Rt [13/Dec/05:18:22:37]
server/request et R | . [13/Dec/05:18:23:17]
Stryctiral relations RS [13/Dec/05:18:24:57]

request Jeci---f- _["GET /getstyle.c%@TTP/l.l"]——-

\{ "GET /managestyle.css HTTP/1.1"]/

Fig. 3. In this example, the trace model is a set of concepts (server, request, username). Trace
objects (one server and two requests) are related to the temporal domain D, through R, (note
the server is related to a time interval). Traces objects have structural relations through Ry

3.2 Traces-based system architecture

The different parts of a TBS are described in Figure 2. The 7BS Kernel is the core of
the system. It is composed of a transformation system and a traces base. The traces
base is a set of traces and allows permanent storage and access to the traces. A real
traces base can be for example a set of XML files or a temporal database.

As seen above, a main part of trace exploitation holds on their transformation. The
transformation system performs transformations T during the modification and han-
dling of the traces. The transformation system allows (1) modifying the trace by en-
riching or filtering its data, (2) modifying the model of trace, (3) updating the traces
base or making automatic transformations by using transformation models (sets of
formal rules expressed in a rule-based language).

The query system allows formulating and resolving queries on the traces base. Que-
ries can be made on traces considering the models they are associated with, their trans-
formations, their objects in their interrelations and time inscription. For instance one
can consider all the traces of an individual at a certain transformation level, and query
for episodes involving objects in structural and temporal relations (for example two
web pages related to the same server, visited in a same hour).

The collecting system is a set of processes allowing the conversion of several trac-
ing sources into basic traces by appropriate tools. Tracing sources are files or data
streams in an unspecified explicit format, from which basic traces will be constructed.
The simplest collecting system would do simple data integration and time-based syn-
chronization of the various sources. A more complicated system would incorporate
different tracing sources in an intrinsic iterative process for instanced by mixing video
annotation and log files use, efc.

| Visualization System ‘ ‘ Query System ‘
Base of Mt : TBS (Kernel
c Traces ‘ e TSB ‘ Vi (o ‘ Model of trace ()
[0}
% “
; Transformation
Q = Trace i ‘ Mt ‘
o= T / | 5 : V\‘C System
= , . .
Transformati
? Trace 0 1o |Mt . ‘ Trace 1 1o Il\/lt : ransmgggla 1oL
b= S ——= =
=
‘ Collecting System ‘
‘ Tracing Source ‘ ‘ Tracing Source | ‘ Tracing Source ‘

Fig. 2. Trace-based framework architecture.

The visualization system allows visualizing the traces and thus facilitates analysis and
interpretation. The visualization system is a set of techniques for presenting traces
(basic traces or transformed traces) in a visual form allowing human’s direct exploita-
tion. A well-known visualization involves using a timeline that describes the temporal
sequence of data. If video is implied as a tracing source, hence in the temporal do-
main, visualization can link video and traces. For example, play a video synchro-
nously with trace visualization for better interpretation (as in [8]).

Lastly, the trace management system (TMS) allows managing the various models
involved in a TBS: trace models, transformation models, queries, efc. It allows the
archiving of the traces, the granting of rights on traces base and offers also an inte-
grated management of trace lifecycle. Indeed, TMS holds a traceability of transforma-
tions and operations performing in TBS. This functionality allows the management of
the experience use of TBS and facilitates the trace management and engineering.

4 Conclusion

This paper has presented our approach which suggests to consider use traces, con-
structed from the interaction between a user and his computer-mediated environment,
as a tool for EM approach. In the first part, we have outlined that activity reflexivity is
a key step to deal with interaction or use experience of a user. After explanations
about the kind of traces involved in our approach, we have proposed examples of use
trace exploitation to investigate experience sharing and experience reusing.

In the second part of this paper, we have detailed the framework developed to sup-
port use traces exploitation with Trace Based Systems (TBS). We have formally de-
fined the notions of trace and trace model, and have given some details on the differ-
ent parts of a TBS that are needed to support trace processing.

The general approach we proposed in this short paper is backed by different do-
main-oriented studies we carried out in our research team. Future work implies devel-
oping the general approach both on the theoretical and practical sides. The theoretical
work will focus on traces, reflexivity and experience management for individuals and
collectives, and formal trace modeling, transforming and querying. The Practical work
will be devoted to the implementation of the general framework and its instantiation
into various real trace-based systems (especially on collaborative systems), so as to
validate our assumptions, and to conduct complete experiments in EME.

5 References

1. Sun, Z., Finnie, G. Experience Management in Knowledge Management. In Proc. 9th Inter-
national Conference, Part I, KES 2005, Melbourne, Australia, (2005) p.979.

2. Laflaquiére, J., Champin, P.A., Prié, Y., Mille, A. Approche de modélisation de 1’expérience
d’utilisation de systémes complexes pour I’assistance aux taches de veille informatiquement
médiées, In ISKO-France’2005, INIST/CNRS, Nancy, France, (2005) 209-230 (in french)

3. Laflaquiére, J., Ciaccia, A. : Facilitation de tiches informatiquement médiées : une approche
centrée sur la réflexivité de Iutilisation, 6™ workshop Colloque des jeunes chercheurs en
sciences cognitives 2005, Bordeaux, France (2005), 217(in french)

4. Weerasinghe, A., Mitrovic, A.: Facilitating deep learnig through self-explanation in an
open-ended domain, International journal of Knowledge-based and Intelligent Engineering
systems, IOS Press, 10 (2006) 3-19

5. Castelli C., Colasso L., Molinari A., Getting lost in Hyperspace: Lessons Learned and Future
Directions, in ED-MEDIA 96/ED-TELECOM 96, Boston, (1996), 124-130

6. Mobasher, B., Cooley, R., Srivastava, J. 2000a. Automatic personalization based on web
usage mining. Commun. ACM, 43 8 (August), 142—-151.

7. Dekker S., Nyce, J.M., How can ergonomics influence design? Moving from research find-
ings to future systems. Ergonomics, vol. 47, N. 15 (2004), 1624 - 1639.

8. Georgeon, O., Bellet, T., Mille, A., Letisserand, D., Martine, R.: Driver behaviour modelling
and cognitive engineering tools development in order to assess driver situation awareness.
Workshop on Modelling Driver Behaviour in Automotive Environments. (2005), Ispra.

9. Star, S. L. 1989. The structure of ill-structured solutions: Boundary objects and heteroge-
neous distributed problem solving. M. Huhns and L. Gasser, eds. Readings in Distributed
Artificial Intelligence. Morgan Kaufman, Menlo Park, CA.

10.Morse, E. and Steves, M. CollabLogger: A Tool for Visualizing Groups at Work. Proceed-
ings of WETICE 2000, Workshops on Enabling Technologies:Infrastructure for Collabora-
tive Enterprises, IEEE Computer Society, (2000), 104-109.

11.Champin, P.-A., Prié, Y., & Mille, A.: MUSETTE: a framework for knowledge capture
from experience. In Proceedings: Egc'04, (2004), Clermont Ferrand, France (in french)

12. Luotonen A. “The Common Log file Format.”
http://www.w3.org/pub/WWW/Daemon/User/Config/Logging.html

Description of modifications

- Grammar corrections have been completed.
- A short definition of “activity reflexivity” has been added earlier in the paper (sec-
tion 2).

