
MUSETTE: a Framework for Knowledge
Capture from Experience

Pierre Antoine Champin, Yannick Prié, Alain Mille

LIRIS - Bât Nautibus - UFR Informatique

Université Claude Bernard Lyon 1 / F-69622 Villeurbanne Cedex
prenom.nom@liris.cnrs.fr

http://liris.cnrs.fr/prenom.nom

Résumé. Nous présentons dans cet article une nouvelle approche de
modélisation de l’expérience d’utilisation d’un système informatique, avec
pour objectif de réutiliser cette expérience en contexte pour assister
l’utilisateur à effectuer sa tâche. Le modèle se base sur la capture d’une trace
d’utilisation conforme à un modèle d’utilisation général, lequel décrit les
objets et les relations manipulés par l’utilisateur du système informatique visé.
Cette trace primitive peut être considérée comme une base de connaissances
neutre par rapport à la tâche, qui peut être analysée a posteriori à l’aide de
signatures de tâche expliquées permettant d’y localiser des épisodes signifiants
qui pourront être réutilisés par des assistants logiciels comme connaissances
contextualisées. Quatre scénarios illustrent cette approche.

1. Introduction

It is a triteness to say that computers are widely used, for more and more various and
numerous tasks, which mainly rely on “information management”: information organization,
storage, communication, retrieval, sharing… Furthermore, information management
environments get increasingly customisable, in order to get closer to users’ practices, usages
and, more generally, to their needs of handling information whatever its form. For example,
we could consider that an environment composed of a/ the web as a resource provider
(documents, data) and b/ a tool for viewing and editing HTML documents, is adapted to any
task involving information gathering and publication. The spectrum of computer-mediated
tasks becomes wider, and tools for performing these tasks become more versatile and
customisable. Since, on the other hand, they have more and more (often inexperienced)
users, there is a increasing need for assisting the latter in their tasks while using tools or sets
of tools. As a consequence, there is a need to design software agents as assistants, which
would take advantage of knowledge describing the task at hand. Indeed it becomes necessary
to take into account user’s tasks in order to be able to interpret, in their context, the traces left
by the use of the computer environment. Of course, in many situations of user assistance,
there can be a wide variety of questions that can be formulated, depending on the context of
use. Let us stress the fact that this notion of “context” has nothing to do with what is
commonly addressed in the so-called “contextual help”: the latter is exclusively considering
the computer environment context (e.g., selected item, current menu) while we are focusing
on the user’s context, in particular the task he or she is willing to perform.

More precisely, we do consider two kinds of tasks. First, we consider tasks that are well
identified, for which assistance would rely on knowledge described in carefully designed
ontologies. But it is also important to consider a second kind of tasks, which are hard to

MUSETTE: A framework for Knowledge Capture from Experience

anticipate, and should be recognized from their manifestations and defined on the fly,
considering actual experience of use of the system. We would like to address these tasks, so
our main question is: how is it possible to model and capture experience in using a system,
so that it can be reused as knowledge for user assistance? Moreover, how could it be that the
assistance itself could evolve with concrete experience?

Our group, which comes from the Case-Based Reasoning (CBR) research field as a mean
of tracking and reusing experience, has been attempting to propose solutions for this
challenge across previous research works [Prié and Mille, 2000; Champin and Prié, 2003].
This led us to elaborate Musette (Modelling USEs and Tasks for Tracing Experience), a
general framework for representing concrete experience in relation with its context of use.

Next section presents the Musette global approach. The two following sections present
the notions of use model and traces, then of explained task signature as a mean to split a
trace in episodes, or potential reusable cases. The fifth section deals with scenarios
demonstrating different kinds of Musette assistants in action, while the sixth section is
devoted to discussing related works, principally in the field of CBR and task modelling.

2. Global approach

Figure 1 presents the general framework of our approach, leading (clockwise) from the
observation level (upper-right corner) to the experience reuse level (lower-left), with two
levels of experience modelling. A user interacts with a system, leading to changes in this
computing system (events, files...). An observer agent, observing these changes according to
an observation model, generates a primitive trace, which conforms to a general use model.
Then, a generic trace analyser extracts significant episodes from the primitive trace,
according to explained task signatures. These episodes can be (re)used by assistant agents,
which can assist the user either as agents clearly distinct from the system (direct assistance),
or by modification of the system (system mediated assistance). In the latter case, the
assistance interaction can in turn be observed by the observer agent, allowing assistance
episodes to be also reused. Let us emphasize the fact that Musette is only a general
framework. It can be implemented using various languages or representation formalisms,
provided that those enable the representation of every component of the Musette approach.

3. Use model and traces

Since the Musette approach requires a representation, as a primitive trace, of the
interactions between the user and the system, the first step in applying that approach is to

User
Observer

agent

Prim itive trace

 Episodes Episodes

interaction

 direct assistance

system
m ediated
assistance

O bservation

trace
generation

episode
extraction

....

Episode
reuse

System
O bservation Model

Task signature 1 Task signature 2

Use M odel

Assistant
agents

Generic trace analyser

FIG. 1 - Introducing our approach and vocabulary

Champin et al.

decide what the trace will be made of, and how it will actually be constructed. Those
questions must be answered respectively by the use model and the observation model, in
order to build the observer agent in charge of producing the trace (cf. fig. 1). Basically, the
trace will be composed of Objects of Interest (OI). Those can belong to one of the three
following categories: entities, events and relations. Entities can be characterized as objects
being present to the user in their interaction with the system, while events can be
characterized as objects happening during the interaction. Objects make sense for both the
computer application and for the user. Relations are binary, and can imply either entities or
events. The use model for a particular system describes what kind of entities, events and
relations will actually be observable to produce the primitive trace. Additional constraints,
including ones over the internal structure of the OIs, can also be part of the use model. Let us
emphasize the fact that the objects of interest used to describe a system, as the word ‘interest’
implies, depend on the particular focus, however general, of the use model. Deciding how the
user-system interaction will be observed is bounded to be biased by the use model designer’s
goals. Describing the components of the to-be-produced trace is not sufficient to build an
observer, though. The observation model still has to be described, as a set of means to access
relevant data in the system, as well as rules constraining the process of producing the trace
—e.g., which relevant subset of all the observable entities must be written to the trace at a
given moment? Unlike the use model, the observation model is not specified by the Musette
approach for the moment, and an ad-hoc observer has to be built for every system and with a
particular use model in mind, and the observation model has to be hard-coded manually in
such an observer.

Once the observer agent has been specified by the use model and the (possibly hard-
coded) observation model, it can produce traces from the observation of the interactions
between the user and the system. The structure of the trace is not limited to a continuous
stream of entities and events, possibly in relation with one another. Indeed, entities are used
to represent the state of the system at a given moment (or during a period considered to be an
instant in the context of the use model). On the other hand, events happen in the transitory
period between two states. Hence the grouping, in the trace, of OIs according to their
category, turns the trace into an alternate sequence of states and transitions. It is worth noting
that states and transitions in the Musette approach merely have a temporal role. They are not
intended to convey any predefined causal meaning. Of course, a given use model can add
such causal semantics to specific kinds of entities, events and relations it defines.

4. Extasis and episodes

Assuming that the use model enables an appropriate description of the interactions of the
user with the system, the user’s experience is potentially retrievable from the primitive trace.
More precisely, we call an episode any part of the trace corresponding to a specific
experience in performing a specific task, and which can be reused in a similar situation.
Pieces of the trace are recognized as episodes related to a particular task thanks to EXplained
TAsk SIgnatures (Extasis).

We need a mean to locate episodes in the primitive trace. More generally, we consider
that common features can be expressed by: 1/ a pattern of the graph constituted by the
objects of interest (e.g. events and entities) and their relations; 2/ constraints on the relative
positions of OIs in the trace (e.g. co-occurrences in observations – States or Transitions –,
distance between observations in the trace); 3/ language-dependent constraints on the internal
structure of OIs (e.g. attribute values).

MUSETTE: A framework for Knowledge Capture from Experience

Once these common features have been identified for a particular task, they can be
considered a signature of this task. Indeed, their instantiation in the trace can be interpreted
as an evidence of the user performing that task in the corresponding period. Episodes are not
limited to parts of the trace instantiating a task signature, though: once identified the task
performed by the user, one can improve their interpretation of the trace. The roles that the
OIs play in that trace may be easier to understand; additional relations, not captured by the
observer agent, and not present in the use model, may be inferred; etc. Therefore, the episode
can be annotated, or explained, by a number of information coming from the fact that it has
been recognized as an occurrence of a particular task. Explanations may take the form of free
text annotation (that a human could interpret), or of formal knowledge annotation (aimed at
an automated agent interpretation).

5. Scenarios

Let us demonstrate how different kinds of assistants can be designed on top of the
Musette approach, considering a web browsing scenario. A specific assistant can take into
account one given task by reusing the episode instantiating the corresponding Extasi. For
example, we could build an assistant that would notify the user whenever she is browsing a
page in an interesting site —that is, whenever it would find an episode matching an Extasi
“Bookmarking an interesting site” whose site is the current site. Such a specific assistant can
apply case based reasoning mechanisms [Aamodt and Plaza, 1994] to reuse relevant episodes
in a given context. However, an advantage of the Musette approach is that the same
knowledge base (the primitive traces) can be shared by many different assistants extracting
different episodes from it. Moreover, a new assistant can be added without needing to build a
completely new knowledge base: only a new Extasi has to be provided in order to extract
new episodes from existing traces.

The second scenario involves a generic assistant capable of handling any number of
tasks, via their Extasi, in a regular way: exploring the current trace with respect to a
particular task. For instance, the user could browse all the interesting sites she has already
visited, or all the pages she preferred to read in French. He could also be suggested to put a
bookmark on a page, or change the language setting, when he has already done so with a
similar page. Again, the assistant could even perform those actions automatically. The
advantage of Musette here is that every particular task is reified and elicited by the
corresponding Extasi, and that the explanations provided in the Extasi can be used to guide
the assistant as well as to make it understandable by the user.

In the third scenario, the user explicitly asks the assistant for help. The latter then has to
identify the task being performed by the user in order to select appropriate episodes for
reuse. Task identification can range from explicit selection of an Extasi by the user, to fully
automatic detection in the current trace according to the available Extasis. An intermediate
solution is for the system to propose various interpretations of the user’s activity, based on
the partially instantiated Extasis and corresponding explanations. The user may then accept
or reject those interpretations until a consensus is reached.

The fourth scenario goes a step further than the previous one. Assume none of the
proposed Extasis satisfy the user. The assistant could provide a mean for him to specify even
more precisely what task he is willing to perform. For example, our user does neither want to
ask someone, nor to refine his query by adding more keywords, but would rather submit the
same query to a more specialized search engine (e.g., field specific or language specific).
What the user is actually doing is describing a new task with its own Extasi —without

Champin et al.

specifying it completely, of course, since the user wants help to find the appropriate
specialized search engine. Even though this Extasi was not known before, this task might
have been already performed, and therefore some traces might contain episodes matching
this newly created Extasi. The user can indeed describe a previously unknown task on the
fly, and still obtain assistance about it. We see here how the separation in Musette, between
the general use model and specific task signatures, leverages user assistanceMerci de
respecter les styles suivants pour les listes.

6. Related works

Long before digital computers and the Internet, [Bush, 1945] was dreaming of what he
called the “MEMEX”, a device that would capture everything a scientist looked at or
commented about, creating a trail of information which he or other scientists could later
retrieve. In the 90's, [Hill et al., 1992] saw cumulative interactions of users with digital
objects as a form of wear and tear, comparable to the torn pages in a manual. More recently,
[Wexelblat and Maes, 1997] have developed a tool enabling users to visualize the paths the
others have taken through a site. These preliminary works focused on what could be
presented directly to the user as footprints to follow for her (unformulated) request. They
aimed to work as generic assistants. Some works focused on the user task to put in context
such assistance [Farell et al., 2000; Francisco-Revilla and Breimer, 2000] while others tried
to capture general web navigation episodes on static signatures [Corvaisier et al., 1997;
Jaczinski and Trousse, 1998] or, like [Takano et al., 2000], used past procedure cases to help
their use in specific applications. These last works rely on the Case-Based Reasoning
paradigm, which is widely used for Help Desk systems. Those need cases to be described
through forms [Herbeaux, 1999] or during a “conversation” (which assumes that questions
can be structured in order to fit the cases of a library) [Aha et al., 2001]. Therefore, case
structure has to be defined in advance and case libraries are built according to it. The
experience stored in them thus becomes scarcely exploitable for unanticipated questions. If
cases have to be relaxed as use episodes dynamically found in the trace, it is nevertheless
necessary to take into account the user tasks context. Task modelling has been widely studied
by the knowledge engineering community. This modelling can be performed in the context
designing knowledge-based systems [Schreiber et al., 1999] and is increasingly used for KM
purpose [Holz et al., 2001]. In the same way, ontology design is more and more explicitly
task driven [Reynaud, 1997]. Knowledge engineering proposes models, methods and tools,
often implying great efforts to elicit tasks from users’ actual behaviours. On the other hand,
computer assistants helping users to perform a task only need it to be expressed in terms of
relevant resources for the assistance, rather than full-fledged task modelling. Nevertheless, in
an experience reuse approach, it is necessary to spot pieces of the use traces that would refer
to some user’s task. Hence, we proposed EXTASIs as simplified views of task models. Such
signatures can be designed according to classical knowledge engineering approaches in order
to be integrated in a computer environment, before the system is ever used; but they can also
be designed on demand at run-time by the user himself. This approach assumes that end
users are co-designers of their assistance environment.

7. Conclusion

The application of the MUSETTE model to an interaction needs a prototyping phase: in
many cases, observer agents will have to be coded from scratch, and therefore need

MUSETTE: A framework for Knowledge Capture from Experience

significant development efforts. To go further than plain pen-paper modelling, we need a
graphical tool for rapidly prototyping use model, primitive traces and first task signatures.
We developed such a prototype as a plug-in for PROTÉGÉ (http://protege.stanford.edu/),
using OKBC as an implementation language for MUSETTE. Apart from the systems we have
already built, upon whose creation experience we designed MUSETTE, and therefore which –
to some extend – implemented parts of the MUSETTE approach, we are now more specifically
applying this approach to the design of several assistant agents concerned with various tools.

References

[Aamodt and Plaza, 1994] A. Aamodt, E. Plaza. Case-based reasoning; Foundational issues,
methodological variations, and system approaches. AI Communications, Vol.7, No.1

[Aha et al., 2001] D.-W. Aha, L. Breslow, and H. Munoz-Avila. Conversational case-based
reasoning. Applied Intelligence, 14(1):9–32, 2001.

[Bush, 1945] V. Bush, As we may think, Atlantic Monthly, 176(1), 101-108, 1945
[Champin and Prié, 2003] P-A. Champin and Y. Prié. Musette: uses-based annotation for the

Semantic Web, In Annotation for the Semantic Web, IOS Press, Amsterdam (NL) , 2003.
[Corvaisier et al., 1997] F. Corvaisier, A. Mille, and J.-M. Pinon. Information retrieval on

the WWW using a decision making system. In RIAO 1997, pages 284–295, Jun 1997.
[Farell et al., 2000] R. Farrell, P. Fairweather and E. Brumer. A task based architecture for

application aware adjuncts, ACM International Conference on Intelligent User
Interfaces, New Orleans, LA USA, pages 82-85, 2000

[Francisco-Revilla and Breimer, 2000] L. Francisco-Revilla and E. Breimer. Adaptive
medical information delivery combining user, task and situation models, Internation
Conference on Intelligent Interfaces, New Orleans, LA USA, pages 94-97, 2000

[Hill et al., 1992] W.C. Hill, J.D. Hollan, D. Wroblewski and T. McCandless. Edit Wear and
Read Wear. In Proc. of ACM Conference on Human Factors in Computing Systems,
CHI'92, pages 3-9, New York ACM Press, 1992

[Holz et al., 2001] H. Holz, A. Könnecker, and F. Maurer. Task-specific knowledge
management in a process-centred see. In Althoff, Feldmann and Müller, editors,
Advances in Learning Software Organizations, Proc. of LSO 2001, LNCS 2176, 2001.

[Jaczinski and Trousse, 1998] M. Jaczinski, B. Trousse. WWW Assisted Browsing by
Reusing Past Navigations of a group of users, in Advances in Case-Based Reasoning, 4th
EWCBR, Dublin, Ireland, 1998

[Prié and Mille, 2000] Y. Prié and A. Mille. Reuse of knowledge containers: a local
semantics approach. In M. Minor, editor, Workshop on Flexible Strategies for
Maintaining Knowledge Containers, ECAI 2000, number 33, pages 38–45, Aug 2000.

[Reynaud, 1997] C. Reynaud and F Tort. Using explicit ontologies to create problem-solving
methods. Inter-national Journal of Human-Computer Studies, 46:339–364, 1997.

[Schreiber et al., 1999] G. Schreiber, A. Hakkermans, A. Anjewierden, R. de Hoog, N.
Shadbolt, W. Van de Welde, and B. Wielinga. Knowledge Engineering and Management:
The CommonKADS methodology. The MIT Press, 1999.

[Takano et al., 2000] A Takano, Y. Yurugi and A. Kaenaegami. Procedure Based Help Desk
System, ACM IUI 2000, New Orleans, LA USA, pages 264-272, 2000

[Wexelblat and Maes, 1997] A. Wexelblat and P. Maes. Footprints: History-rich web
browsing, In RIAO’97, pages 75-84, 1997.

