

CM3: Architecture client/serveur

- · Objectifs du cours
 - Rappels sur les ordinateurs réseau et Internet. Communication entre programmes et entre machines. Notion de protocole, couches ISO, protocoles de l'Internet. Architecture client / serveur. Considérations de sécurité. Exemples concrets de protocoles: HTTP et Z39.50

Master SIB M1 – SIB 3 : traitement, exploitation de l'information et systèmes d'informat

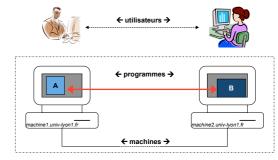
CM3 : Architecture client/serveur Yannick Prié – 2005/2006

Réseau : pour quoi faire ?

- Echanger et partager des informations
 - transferts de fichiers/données
 - accès à des fichiers/données distants...
- Gérer et partager des ressources
 - imprimante partagée
 - puissance de calcul
 - stockage et sauvegarde...
- Communiquer
 - courrier électronique
 - chat
 - publication en ligne...

- Des machines et leurs programmes (= nœuds du réseau)
 - Ordinateurs réseau (carte réseau + système exploitation réseau)
- Périphériques réseau (imprimante...)
 - Matériel réseau spécialisé
- Des connexions entre les machines (= branches du réseau)
 - par câble (fibre optique, RJ45, cuivre...)
 - par radio (ondes hertziennes, infrarouge...)

Master SIB M1 – SIB 3 : traitement, exploitation de l'information et systèmes d'informat Bloc 4 : architecture et fonctionnement des systèmes d'information documentaires


M3 : Architecture client/serveur Yannick Prié – 2005/2006

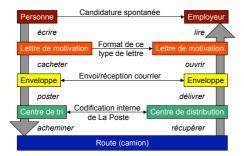
Réseau local / Internet

- Réseau local
 - centré autour d'une organisation (université, entreprise, famille)
- géré par celle-ci
- Internet = réseau des réseaux mondial
 - ensemble de réseaux locaux
 - reliés par des « backbones » (épine dorsale)

Communiquer entre humains / programmes / machines

Master SIB M1 – SIB 3 : traitement, exploitation de l'information et systèmes d'inform

3 : Architecture client/serveur Yannick Prié – 2005/2006


A tous les niveaux, des protocoles

- Définition
 - Ensemble de règles et de procédures à respecter pour pouvoir échanger des données sur un réseau
 - Remarque : exemple de la vie courante
 - Ca va? (→) / Oui (←) / J'ai pas entendu (→) / Je répète : « Oui » (←)
- Exemples à différents niveaux
 - Niveau programmes (A B)
 - Tu fonctionnes ? (→) / Oui (←) /Envoie-moi le fichier toto.doc (→) / Ok c'est parti (←) / toto.doc (←) / Bien reçu (→) / Au revoir (←)
 - Niveaux système d'exploitation
 - Toi, système d'exploitation de la machine machine1.univ-lyon1.fr, passe le message « Tu fonctionnes ? » au programme qui écoute sur le port 3422 (\rightarrow)
 - - Toi carte réseau, regarde passer des paquets de données sur le câble, attrape ceux qui sont pour toi, et passe-en le contenu au système d'exploitation

Protocoles de communication

- But
 - compréhension entre machines / logiciels
- communications indépendantes du système d'exploitation ou de la plate-forme
- limitation des erreurs/risques durant la transmission
- Protocole pour l'échange de messages
 - un langage et un ensemble de règles
 - que deux systèmes doivent connaître (parler le même langage) les fabricants doivent se conformer aux normes ISO (International
 - Standardization Organization) pour les protocoles utilisés sur leurs machines/logiciels
- Modèle OSI (Open System Interconnection)
 - découpe le processus de transmission en 7 «couches»
- chaque couche est responsable de l'un des aspects de la communication en réseau

Modèle en couches

Master SIB M1 - SIB 3 : trait

TCP/IP :

base de l'Internet

Le modèle OSI les 7 couches

Réseau : identification des machines connectées au réseau

Liaison de données : subdivision des informations en «paquets» pour livraison sur le réseau

Physique : contrôle du support de transmission; circulation de l'information électrique

Protocoles de l'Internet

- Niveau OSI réseau
 - IP (Internet Protocol)
 - adressage (routage) des informations identification des machines
- Niveau OSI transport / session • TCP (Transmission Control Protocol)
 - transfert d'information, contrôle des transmissions
- Niveau OSI application
 - FTP (File Transfer Protocol)

 transfert de fichiers

 - HTTP (HyperText Transfer Protocol)
 transfert d'informations sur le web
 - DNS (Domain Name Server protocol)
 - conversion du nom des ordinateurs connectés au réseau en adresses IP

Identification de machines sur Internet

- · Adresse IP universelle unique
 - 4 nombres de 8 bits (4 octets)
 - · séparés par des points ex: 134.214.128.17
- Classes d'adresses / organisations
 - Classe A: 112.x.y.z (ex. NASA)
 - Classe B: 134.214.x.y (ex. Université Lyon 1)
 - Classe C: 56.243.12.x (ex. Cyber-café)
- Remarque : IPV6
 - 16 octets
 - commence à se mettre en place

Noms de ressources sur Internet

- Idée : associer à l'adresse IP un nom de machine
 - ex. lisiperso15.univ-lyon1.fr # 134.214.88.239
- Nom de machine
 - décomposé hiérarchiquement
 - domaine (critère géographique, institutionnel, organisationnel...) sous-domaine (éventuellement)
 - nom local de la machine

 - exemples

 ligimpc13.univ-lyon1.fr
 - www.berkeley.edu
 - ftp.berkeley.edu www.education.gouv.fr
- Attribution

 ICANN : Internet Corporation for Assigned Names and Numbers
- gov, edu, etc.
 AFNIC : Association Française pour le Nommage Internet en Coopération
 - .fr, .gouv.fr, .asso

Master SIB M1 – SIB 3 : traitement, exploitation de l'information et systè Bloc 4 : architecture et fonctionnement des systèmes d'information doc

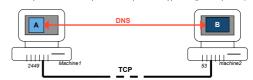
Traduction adresse IP / nom de machine

- Service de traduction fourni par des programmes appelés DNS (Domain Name Server)
- DNS est aussi le nom du protocole utilisé pour communiquer entre un programme qui désire une traduction, et un serveur
- Un DNS gère un domaine...

... et transmet la question à un autre DNS s'il ne sait pas répondre.

Client / serveur

- Service
 - comportement d'un programme qui peut rendre service à d'autres programmes
 - exemple : service de traduction noms/adresses IP = service DNS
 - un service est appelé par une requête suivant un certain protocole
 - exemple : requête « donne-moi la traduction de lisiperso15.univ-lyon1.fr » envoyée suivant le protocole DNS
- Client
 - programme demandant un service à un autre programme ET
 - machine sur laquelle tourne ce programme client
- Serveur
 - programme fournissant des services à d'autres programme ET
 - machine sur laquelle tourne ce programme serveur


Notion de socket

- - Entrée réseau de la machine

 sur laquelle un serveur « écoute » en attendant des connexions / requêtes

 à laquelle un client va se connecter
 - Socket
- « Tuyau » entre deux programmes
 Quintuplet : (machine1, port1, protocole transmission, port2, machine2)
- Exemple

 - erripie
 Client sur machine 1 appelle serveur sur machine 2 / port 53, suivant le protocole TCP
 La connexion s'établit, le canal de communication est ouvert (port de sortie client : 2449)
 Il devient possible de communiquer suivant un protocole d'application (par exemple DNS)

Client / serveur : exemples (1/2)

- Traduction noms de machines / adresses IP
 - protocole : DNS
 - clients : tout programme réseau utilisant des noms de machine,
 - serveurs : DNS (port = 53) • remarque : un DNS peut jouer le rôle de client pour un autre DNS
- Transfert de fichiers protocole : FTP
 - clients : outils de gestion de transferts FTP (Ws_FTP, FileZilla, etc.)
 - serveurs : serveurs FTP (port = 21-22)
- Web
 - protocole : HTTP
- clients : navigateurs web (Mozilla, IE, Firefox, Opera...)
- serveurs : serveur web (IIS, Apache, ...) (port = 80)

Client / serveur : exemples (2/2)

- Machine connectée au réseau
 - · protocole : ping
 - · clients : ping
- · serveurs : serveurs ping
- · Peer to peer
 - protocoles : envoi de fichier, échange d'informations, ...
 - client : client P2P
 - serveurs : client P2P, serveurs de métadonnées

Client / serveur : remarques

- Un programme serveur
 - tourne en permanence, attendant des requêtes
 - peut répondre à plusieurs clients en même temps
- - machine robuste et rapide, qui fonctionne 24h/24
 - grande mémoire,
 - disques suffisants
 - sécurité des disques
 - présence d'administrateurs réseau pour gérer les serveurs

Architecture client / serveur

- Des échanges entre programmes sur réseau de machines suivant les principes client / serveur
 - des machines serveur peu nombreuses
 - des postes clients pour les différents utilisateurs
- Fiabilité et avantages (cf. « Comment ça marche ? »)
- Ressources centralisées : les serveurs sont au centre du réseau, gèrent les ressources communes à tous les utilisateurs, et permettent d'éviter les problèmes de redondance et de contradiction
- Meilleure sécurité : faible nombre de points d'entrée pour l'accès aux
- Administration centralisée au niveau des serveurs : les clients ne sont pas des ressources critiques Réseau évolutif : ajouter/enlever des clients sans perturber le réseau
- Inconvénients
 - Coût élevé des machines serveurs, car fiabilité vitale

Sécurité des échanges réseau

- Protection des données qui circulent
 - Cryptage des données
- Protection des données sur les machines
 - Identification
- Protection des attaques
 - Firewall
 - Antivirus

Notion de session

- Session
 - Connexion maintenue entre un logiciel client et un serveur
 - Par exemple
 - · identification sur un intranet,
 - navigation sans donner à nouveau mon login/mdp
 - le lien entre le client et le serveur est maintenu même quand il ne se passe rien
 - Une session est en général coupée si elle dure trop longtemps

Echanges sur le web: HTTP

- HyperText Transfert Protocol Défini par le W3C (World Wide Web consortium)
- La plupart des URL · Envoi de documents web
 - d'un serveur web (serveur HTTP) vers un client web (navigateur)
- Principe
 - Requête du client au serveur
 - demander une ressource web (page, image, service)
- Réponse serveur au client
 envoyer une ressource (page web, image, réponse)

 HTTP 1.0
- HTTP 1.1
 - gère les sessions (permet de garder une connexion)

HTTP: requêtes / réponses

- Référence
 - RFC 2616 (Request For Comments =/= standard de fait)
- Requête client
 - Contenu de la requête (type + URI + version protocole)

 - Ligne vide (indique fin de requête)
- Réponse serveur
 - Code réponse (version HTTP + code + chaine)
 - En-têtes
 - Ligne vide (indique fin en-tête)
 - Contenu de la réponse (souvent le document qu'on veut)

HTTP requêtes / réponses

- Requêtes
 - GET : demande de document ou de service

 - POST : demande de service avec envoi de paramètres HEAD : demande d'information concernant un document
- Réponses

 - Codées2xx : succès
 - 200 : ok
 - 3xx : redirection
 - 304 : document inchangé
 4xx : erreur client
 401 : non autorisé
 404 : inexistant

 - 5xx : erreur serveur 500 : erreur dans l'exécution d'un service
 - 505 : version HTTP non supportée

Master SIB M1 – SIB 3 : traitement, exploitation de l'information et systèr Bloc 4 : architecture et fonctionnement des systèmes d'information doct

En-têtes de requêtes

- Trom : adresse email
 Non envoyée par la majorité des clients pour des raisons de confidentialité
 Accept : liste de types MIME
 Exemples
 audio/mid, image/jpeg
 application/pdf

- application/pdf
 Accept-Encoding: liste de méthodes de codage MIME
 Exemples : compress, x-gzip, x-zip
 Accept-Langage: liste des langues acceptées
 En réalité, n'est pratiquement jamais utilisé
 User-Agent : l'identification du logiciel client
 Permet de répondre differemment suvant le client
 - Ne devrait pas être le cas (car il y a des normes qui devraient être respectées par tous les clients) clients)

 Refrerer : page d'où l'on vient

 Peut être utile pour faire des statistiques de parcours dans le site

 Autorization : login password

 Niveau faible de sécurité (tout passe en clair)

 If-Modified-Since : date

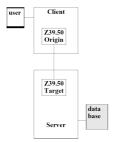
 Ne transmet la page que si elle a été modifiée depuis la date spécifiée

 Utile pour les caches
 etc.

En-têtes de réponses

- Server : type du serveur
- Date : date du traitement de la requête
 Last-Modified : date
- - Utile pour le cache
- Content-Type : type MIME du document renvoyé
 Doit faire partie en théorie de la liste des types acceptés dans la requête (Accept)
- Content-length : longueur des données (octets)
 - . On peut savoir quand (et si) le transfert est fini
 - Permet au navigateurs d'indiquer des barres de progression
 - Non obligatoire
- Content-Encoding : encodage MIME
 - Doit faire partie en théorie des méthodes spécifiées dans la requête (Accept-Encoding)
- Content-Langage : langue

Master SIB M1 - SIB 3: traitement, exploitation de l'information et sys


Exemple

equerin >telnet bat710 80 Trying 134.214.88.10...
Connected to bat710.univ-lyon1.fr.
Escape character is '^]'. Escape character is "A".
HEAD / HTTP/1.1
Host: www710.univ-lyon1.fr
Connection: close
HTTP/1.1 200 OK
Date: Mon, 09 Sep 2002 14:50:22 GMT
Server: Apache/1.3.9 (Unix) Debian/GNU
Last-Modified: Thu, 11 Jul 2002 09:36:01 GMT
ETag: "27e6-1811-3d2d5181"
Accept-Ranges: bytes Accept-Hanges: bytes
Content-Length: 6161
Connection: close
Content-Type: text/html; charset=iso-8859-1
Connection closed by foreign host.
eguerin >

aster SIB M1 – SIB 3 : traitement, exploitation de l'info

Interrogation de catalogues Z39.50 : principes

- Base de données bibliographiques hétérogènes
- Serveur Z39.50 = passerelle
 - traduction des requêtes Z39.50 dans le langage de la base traduction des réponses de la base suivant le protocole
- Z39.50 Dialogue client/serveur suivant
- Z39.50 • Le client Z39.50 envoie les requêtes et affiche les réponses

(ZIG: Z39.50 tutorial)

Remerciements

- Certaines diapositives proviennent de cours du Permis de Conduire Informatique (Université Lyon 1 - http://pci.univ Ivon1.fr)
- D'autres sont inspirées du cours « Web avancé », IUT A, UCBL (Eric Guérin)