
Using Ontologies for Software Development
Knowledge Reuse

Bruno Antunes, Nuno Seco and Paulo Gomes

Centro de Informatica e Sistemas da Universidade de Coimbra
Departamento de Engenharia Informatica, Universidade de Coimbra

bema@student.dei.uc.pt, {nseco,pgomes}@dei.uc.pt
http://ailab.dei.uc.pt

Abstract. As software systems become bigger and more complex, soft-
ware developers need to cope with a growing amount of information and
knowledge. The knowledge generated during the software development
process can be a valuable asset for a software company. But in order
to take advantage of this knowledge, the company must store and man-
age it for reuse. Ontologies are a powerful mechanism for representing
knowledge and encoding its meaning. These structures can be used to
model and represent the knowledge, stored in a knowledge management
system, and classify it according to the knowledge domain that the sys-
tem supports. This paper describes the Semantic Reuse System (SRS),
which takes advantage of ontologies, represented using the knowledge
representation languages of the Semantic Web, for software development
knowledge reuse. We describe how this knowledge is stored and the rea-
soning mechanisms that support the reuse.

Key words: Ontologies, Sematic Web, Software Reuse, Knowledge Man-
agement.

1 Introduction

The new vision of the web, the Semantic Web [1], aims to turn the web more
suitable for machines, thus make it more useful for humans. It brings mecha-
nisms that can be used to classify information and characterize it’s context. This
is mainly done using knowledge representation languages that create explicitly
domain conceptualizations, such as ontologies [2]. These mechanisms enable the
development of solutions that facilitate the access and exchange of relevant in-
formation.

The storage and access to relevant information is a central issue in knowledge
management [3], which comprises a set of operations directed to the management
of knowledge within an organization, helping the organization in the achievement
of its objectives. The technologies that are behind the Semantic Web vision pro-
vide an opportunity to increase the efficiency of knowledge management systems,
turning them more valuable. These technologies provide knowledge representa-
tion structures that can be used to improve the storage, search and retrieval
functionalities of common knowledge management systems.

2 Bruno Antunes, Nuno Seco and Paulo Gomes

One of the problems that software development companies face today is the
increasing dimension of software systems. Software development projects have
grown by complexity and size, as well as in the number of functionalities and
technologies that are involved. The resources produced during the design and
implementation phases of such projects, are an important source of knowledge
inside software development companies. These resources contain the knowledge
that has been used to solve various development problems of past projects. Some
of these problems will certainly appear in the future, for this reason the soft-
ware development resources produced in the past, represent an important source
of knowledge that can be reused in the future. In order to make this knowledge
useful and easily shareable, efficient knowledge management systems are needed.
These knowledge management systems must be able to efficiently store, manage,
search and retrieve all kinds of knowledge produced in the development of soft-
ware systems. To accomplish this, the stored knowledge must be well described,
classified and accessible from where it is needed.

As referred before, ontologies are one of the most important concepts present
in the Semantic Web architecture. They are a powerful mechanism for represent-
ing knowledge and encoding its meaning, allowing the exchange of information
that machines are able to process and concisely understand. These structures
can be used to model and represent the knowledge stored in a knowledge man-
agemente system and classify it according to the knowledge domain that the
system supports. In this paper we describe the Semantic Reuse System (SRS), a
system for the reuse of software development knowledge that we are developing
at the Artificial Intelligence Laboratory (AILab) of the University of Coimbra.

The goal of SRS is the management and reuse of software development knowl-
edge using the mechanisms provided by the Semantic Web, such as RDF, RDFS
and OWL [4], to represent the ontologies that reflect the knowledge used by
the system. We make use of a representation ontology, used to represent tne
different types of artifacts that the system deals with, and a domain ontology,
to classify this these artifacs. As software development knowledge, we consider
the various elements that result from the software development process, such as
specification documents, design diagrams, source code, etc. We will name each
one of these elements as a Software Development Knowledge Element (SDKE).
Our approach aims to provide efficient mechanisms for storing, searching, re-
trieving and managing the stored knowledge, using ontologies and the Semantic
Web languages to represent them.

The next section describes the SRS architecture, as well as the main func-
tionalities and requirements of the system. Section 3 describes the knowledge
base used in the system, and its subcomponents. In section 4 the knowledge
reuse mechanisms are described and illustrated. Section 5 presents similar works
to SRS and section 6 concludes the paper with final remarks and some future
work.

Using Ontologies for Software Development Knowledge Reuse 3

2 SRS Architecture

The SRS system works as a platform that provides a way to store the software
development knowledge in the form of SDKE’s. Besides being stored in the file
system and accessible through an interface framework, the different elements
should be described using a Representation Ontology and classified through a
Domain Ontology. These additional knowledge representation structures will be
used to empower the search mechanisms and make easier the reuse of stored
knowledge. To take advantage of the system functionalities, a set of client ap-
plications can be developed. These client applications can be directed to users
and developers, implemented as standalone applications or as plug-in’s for well
known development environments, or to those responsible for the management
of the stored knowledge and supporting structures of the platform. The system
provides an API for these applications using a web service, for better portability
and integration.

In figure 1, we present the system’s architecture. The system can be struc-
tured in three different logical layers: data, core and interface. The data layer
corresponds to the knowledge base and is described in section 3, it stores all
the knowledge needed for the system reasoning, including the knowledge repre-
sentation structures and the SDKE’s. The core layer implements the reasoning
mechanisms, including the search, suggestion and browsing facilities, which are
described in section 4. The interface layer comprises the semantic web service
and the applications that use the system’s functionalities through this semantic
web service.

The Management Tools comprise a set of applications that can be used to
manage the system and its knowledge base. There is a Knowledge Base Man-
ager that is used to manage the knowledge representation structures, both the
Domain Ontology and the Representation Ontology, the SDKE Repository and
the system related data, such as logging and accounting. These applications are
intended to be used mainly by knowledge managers or experts.

The User Tools comprise a set of applications that will use the services
provided by the platform. These may include standalone applications specially
designed to use the system’s framework, or plug-in’s for development tools that
integrate the system’s functionalities into the environment of the application. An
add-in for the well known integrated development environment from Microsoft,
Visual Studio 2005, will be developed. Through this add-in we will integrate the
functionalities of the platform into the application, enabling searching, submis-
sion and reuse of the stored knowledge. Besides these operations, we intend to
provide pro-active suggestion of knowledge based on the user interaction with the
application. By monitoring the user actions and the underlying working context,
the system may suggest knowledge that can be reused in that context.

The Semantic Web Service interfaces the Core Layer to all the client applica-
tions, including both the Management Tools and the User Tools. The web service
provides an API that maps to the Core API and interfaces all the functionali-
ties of the system, including the functionalities related to the search, storage and
reuse of knowledge, as well as those related to the management of the system.

4 Bruno Antunes, Nuno Seco and Paulo Gomes

Fig. 1. The architecture of SRS.

The use of a web service as an interface to the platform enables portability and
integration. Specially, the Semantic Web Services [5] are an attempt to make
web services prepared to be efficiently used by software agents. This is done by
providing agent-independent mechanisms to attach metadata to a web service
that describes its specification, capabilities, interface, execution, prerequisites
and consequences. The OWL-S [6] language has been developed in order to sup-
port these mechanisms.

3 Knowledge Base

This section describes the knowledge base used in SRS. It comprises the Repre-
sentation Ontology, the Domain Ontology, the SDKE Repository, and System and
User’s Data. The ontologies in the platform will be represented using languages
from the Semantic Web, namely RDF, RDFS and OWL [4], and will be managed
using the Jena Semantic Framework [7] (http://jena.sourceforge.net/),
which is an open source Java framework for building Semantic Web appli-
cations, providing an API for manipulating RDF graphs, including support
for RDFS and OWL. The SDKE Repository will be managed using Apache
Lucene [8](http://lucene.apache.org/), which provides an open source high-
performance engine for full-featured text search and document storage written in
Java. The system and user data will be managed through a relational database.
The next subsections describe each of these parts.

Using Ontologies for Software Development Knowledge Reuse 5

3.1 Representation Ontology

The Representation Ontology defines a set of classes, properties and relations be-
tween classes that are used to model and describe the different types of SDKE’s.
This ontology is used to define every type of SDKE’s that can be used in the
system. The different properties that apply to each one of them and the specific
relations that can exist between them.

This ontology is specified taking into account the different types of elements
that we want to store and reuse. This is mainly done before the deployment of
the system. But this ontology should be viewed as a dynamic structure, since
it should be possible to do some adjustments to the model after it has been
deployed, without affecting the system as a whole. The Representation Ontology
will also include the metadata model developed by the Dublin Core Metadata
Initiative (DCMI) [9], which is an organization engaged in the development and
promotion of interoperable metadata standards for describing resources that
enable more intelligent information systems. The DCMI is integrated in the rep-
resentation ontology as annotation properties to SDKE objects. The adoption of
these standards enables the system to easily exchange data with other platforms,
or even with intelligent agents. As important as describing the components that
are being stored for reusing, is the association, to these components, of what we
call of reuse documentation. This reuse documentation will be defined in the Rep-
resentation Ontology, using a metadata model based on the work of Sametinger
[10], providing vital information for those who will reuse the stored knowledge
in future development projects. In figure 2, we present an example of part of the
Representation Ontology. Note that what appears in the figure is the ontology
editor of the Knowledge Base Manager, which is one of the management tools
of SRS. The figure represents part of the representation ontology taxonomy.

Fig. 2. Part of the representation ontology used in SRS.

3.2 Domain Ontology

The Domain Ontology is used to represent the knowledge of the domain that
the system supports. It is comprised of concepts and relations between concepts.

6 Bruno Antunes, Nuno Seco and Paulo Gomes

The SDKE’s stored in the platform are indexed to one or more concepts in this
ontology, reflecting the knowledge stored in each one of them. Having relations
that semantically relate concepts with other concepts, the system is able to
retrieve not only knowledge that match a query, but also knowledge that is
semantically related and eventually relevant to the user.

This ontology is dynamically built during the submission of new knowledge to
the platform. To construct this ontology, the system uses other source ontologies,
from which it retrieves the concepts and relations that are needed to index new
knowledge. One of the source ontologies that is used is WordNet [11], which is
a large lexical database of English. In WordNet, nouns, verbs, adjectives and
adverbs are grouped into sets of synonyms, each expressing a distinct concept.
The system retrieves the concepts from WordNet, that it needs too classify the
knowledge supported, and import them to the domain ontology. But the system
may also search, retrieve and import ontologies that contain the desired concepts,
using tools such as the Swoogle Semantic Web Search Engine [12], which is a
crawler-based indexing and retrieval system for documents containing knowledge
representation structures of the Semantic Web. In figure 3, we present an example
of part of the Domain Ontology. As in the previous figure, what appears in the
figure is the ontology editor of the Knowledge Base Manager, which is one of the
management tools of SRS. The figure represents part of the domain ontology
taxonomy.

Fig. 3. Part of the domain ontology used in SRS.

In order to import new concepts, from source ontologies to the Domain On-
tology, the system uses techniques of ontology integration, which is a current field
of research and where many problems are still unsolved. As described in the work
of Pinto, et al, [13] ontology integration can be used in three different situations:
integration of ontologies when building a new ontology reusing other available
ontologies; integration of ontologies by merging different ontologies about the
same subject into a single one that “unifies” all of them; and the integration of
ontologies into applications. From these, the situation we face in our system is
building a new ontology reusing other available ontologies. Specially, we want
to build our Domain Ontology by importing the concepts and their relations,
from source ontologies, as long as we need them to index new knowledge. By

Using Ontologies for Software Development Knowledge Reuse 7

using WordNet as the main knowledge source, our Domain Ontology could be
seen as a small part of WordNet, since we would only bring to our ontology the
concepts needed to reflect the stored knowledge. But, having WordNet as the
only source ontology creates some problems, such as domain vagueness, since it
is general, and language specificness, since it is in English. Another alternative
would be reusing ontologies available in large repositories or in the Internet.
This approach, although partially solving the problem of domain vagueness and
language specific, brings even more complex challenges, such as ontology eval-
uation, ontology ranking, ontology segmentation and ontology merging, which
have been described by Alani [14].

3.3 SDKE Repository

The SDKE Repository represents the knowledge repository in the platform.
When submitted, the development knowledge is described and indexed, using
the knowledge representation structures described before, and is stored in the
repository in the same form it as been submitted. This way, the repository con-
tains all the files that have been submitted to the platform, representing the
SDKE’s indexed by the system. These files are stored using Apache Lucene, as
referred before, which also provides advanced text search capabilities over the
stored documents.

3.4 System and User’s Data

The System and User’s Data is comprised of data related to system configura-
tion, logging and accounting. This data comprises parameters and other config-
uration information used by the system; logging data generated by the user’s
interaction with the system, which can be used to analyze the user’s behavior
and eventually improve the system’s efficiency and precision; and data for user
accounting, which includes user accounts, user groups, access permissions, etc.

4 Knowledge Reuse

In the previous section we have described the knowledge that the system uses
and stores, this section presents the reasoning mechanisms used for manipulating
this knowledge. There are a set of modules that implement the basic operations
on the platform: the Core API is an API to all the core functionalities, and acts
as an interface between the core modules and the Semantic Web Service; the
Log Manager implements an interface to all the operations related to system’s
logging; the User Manager implements an interface to all the operations related
to users; the Ontology Manager implements an interface to all the operations over
the Representation Ontology and the Domain Ontology ; the Storage Manager
implements an interface to all the operations over the SDKE Repository ; and
the Data Manager implements an interface to all the operations over the System
Data and User Data.

8 Bruno Antunes, Nuno Seco and Paulo Gomes

In the next sub-sections, we describe in detail the most relevant modules
present in the Core Layer : Indexing Module, Context Module, Search Module
and Browse Module. These modules implement the operations related to the
submission, search, retrieval and management of knowledge in the platform.

4.1 Indexing Module

The Indexing Module implements and provides an interface to submit and in-
dex new knowledge to the platform. The submitted knowledge, in the form of
software development artifacts, must be described using the Representation On-
tology, indexed to concepts in the Domain Ontology and stored in the SDKE
Repository.

The description of the artifacts using the Representation Ontology is done
taking in account their type and associated metadata. The Representation On-
tology defines the different types of artifacts that can be stored in the platform,
their relations and associated metadata. Given the artifacts and the correspond-
ing metadata, the system creates instances of classes in the Representation On-
tology that represents each one of the artifacts. The indexing of the artifacts
in the Domain Ontology comprises two phases: first the system must extract
from the artifacts the concepts used for indexing and then it must verify if those
concepts exist in the domain ontology or if they must be imported from source
ontologies. The extraction of concepts from the artifacts is done using linguistic
tools from Natural Language Processing (NLP) [15]. To index the SDKE in the
Domain Ontology, the system first searches the WordNet [11] for synsets contain-
ing the base forms of the relevant terms of the SDKE. The synsets that contain
the relevant terms are then imported to the Domain Ontology. The synsets are
imported in conjunction with the whole set of its hypernyms, which form one
or more paths from the synset to the root of the synset’s hierarchy. The hy-
pernym of a concept is a concept that is more general that the first and that
contains its definition. The terms not found in WordNet are added to the root of
the concepts hierarchy in the Domain Ontology. These concepts are added with
a special property indicating that they were not imported from the WordNet
and are waiting the validation of the knowledge manager. With all the concepts
that classify the SDKE added to the Domain Ontology, the system indexes the
SDKE to these concepts. After being described and indexed, the artifacts must
be stored in the SDKE Repository.

4.2 Context Module

The Context Module implements and provides an interface to retrieve knowledge
that is relevant for a development context. As development context we consider a
set of elements that can be found in a common IDE, such as packages, interfaces,
classes, methods, etc, and an event, such as the creation of any of the referred
elements. The process of interaction between the user and the Context Module
is represented in figure 4.

Using Ontologies for Software Development Knowledge Reuse 9

Fig. 4. The process of interaction between the user and the context module.

The Context Module can be useful to suggest knowledge for reuse in a devel-
opment environment, such as a programming IDE. By using this module, an IDE
can pro-actively suggest knowledge for reuse upon certain actions of the devel-
oper. For instance, when the developer creates a new package, the IDE can use
the Context Module to retrieve knowledge that is relevant to the package being
created taking into account the context that surrounds that package. As rele-
vant knowledge, we can consider two kinds of knowledge: suggested knowledge
and related knowledge. The suggested knowledge represents knowledge suitable
for replacing the element that fired up the event, so if the developer is creat-
ing a package the system will suggest packages that can be reused. The related
knowledge represents knowledge that cannot replace the element that fired up
the event, but is somehow related to that element or its context, and can also
be useful to the developer. For instance, if a user is modifying a class, the sys-
tem can suggest the piece of text from the specification documentat where the
class is described. The retrieval of SDKE’s, through keyword-based search or
context-based search, is implemented by the Search Module, which we describe
next.

4.3 Search Module

The Search Module implements and provides an interface to all the operations of
searching and retrieving stored knowledge. Three different search methods were
developed: keyword-based search, ontology-based search and full search. The
process of interaction between the user and the Search Module is represented in
figure 5.

The keyword-based search relies on the full-text search capabilities of the
Apache Lucene [8] engine that supports the SDKE Repository. When SDKE’s
are stored in the repository, the Apache Lucene engine indexes their textual
data so that keyword-based searches can be made in the repository. The results
returned are ranked according to the internal algorithms of the Apache Lucene
engine, reflecting their relevance to the query applied.

The ontology-based search uses the Domain Ontology to retrieve the SDKEs
that are relevant to a query. To accomplish this, the system splits the query into

10 Bruno Antunes, Nuno Seco and Paulo Gomes

Fig. 5. The process of interaction between the user and the search module.

terms and uses some rules of detachment, the same used in WordNet [11], to
get the base form of each term. It then searches for concepts that are referenced
by the base forms of these terms. The system retrieves all the SDKE’s indexed
by the concepts that are referenced by the terms of the search query. If the
number of SDKE’s retrieved is not enough, the concepts are expanded to their
hyponyms and hypernyms. Then the SDKE’s indexed by the expanded concepts
are retrieved and again, if they are not enough, the process is repeated until a
defined maximum expansion length is reached. Finally, the retrieved SDKE’s are
ranked according to the number of concepts they are indexed to.

4.4 Browse Module

The Browse Module provides an interface to all the operations related to the
browsing of the stored knowledge. This can be done using either the Represen-
tation Ontology or the Domain Ontology. This means that the knowledge stored
in the platform can be organized by its type or by the concepts it is associated
with.

5 Related Work

This section introduces some recent works in the field of knowledge management
for software development using Semantic Web technologies.

In their work, Hyland-Wood, et al, [16] describe ongoing research to develop
a methodology for software maintenance using Semantic Web techniques. They
propose a collection of metadata for software systems that include functional and
non-functional requirements documentation, metrics, success or failure of tests
and the means by which various components interact. By recording and tracking
the changes in the metadata it is possible to notify the developers of changes
that may influence further development. The system metadata is encoded using
Semantic Web techniques such as RDF, OWL and SPARQL Query Language
[17].

In order to separate the software engineering domain knowledge from the
operational knowledge, Hyland-Wood [18] have created an OWL ontology of

Using Ontologies for Software Development Knowledge Reuse 11

software engineering concepts (SEC Ontology). This ontology describes rela-
tionships between object-oriented software components, software tests, metrics,
requirements and their relationships to the various software components. They
have shown the validity of their approach through an example implementation
using data representing a small portion of a real-world software package. They
applied SPARQL queries to this example data to show that properties represent-
ing the last modification of components and the last validation of requirements
could be updated and that subsequent queries could be used to determine state
changes. Based on this grounding work, they envision a software maintenance
methodology where developers could manually input information about require-
ments through some kind of IDE which would store software system metadata
in a RDF graph and accept SPARQL queries. Changes in metadata could be
tracked and developers would be notified when these changes required actions.

Recent work by Thaddeus [19] has proposed a system similar to SRS, which
uses formal logics for representing software engineering knowledge and reason-
ing. The proposed system, uses a multi-agent approach to implement several
reasoning mechanisms, like: knowledge access, process workflow automation or
automated code generation. They use three different ontologies: Project Ontol-
ogy, Process Ontology and Product Ontology. This system has some common
goals with SRS, but has a different approach to the overall architecture. While
Thaddeus uses a multi-agent approach, SRS uses a Producer/Consumer ap-
proach based on several types of clients that can be connect to the main system
through a Semantic Web Service.

6 Conclusions

In this paper we described the SRS system, which intends to explore new ways
to store and reuse knowledge. We have used ontologies and the Semantic Web
technologies to build a software development reuse platform, representing and
storing knowledge in RDF, RDFS and OWL. The SRS platform provides several
ways to reuse and share knowledge, including a pro-active way of suggesting
relevant knowledge to the software developer using the user context.

Ontologies and the Semantic Web technologies enable the association of se-
mantics to software artifacts, which can be used by inference engines to provide
new functionalities such as semantic retrieval, or suggestion of relevant knowl-
edge. The SRS provides easy integration with client applications through the
semantic web service. Thus, tools for Software Engineering and MDA (Model
Driven Architecture) that use metadata (for exemple, the EODM plug-in for
Eclipse) can be integrated in SRS has knowledge providers. These tools can also
be modified to act as knowledge retrievers.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001) 34–43

12 Bruno Antunes, Nuno Seco and Paulo Gomes

2. Zuniga, G.L.: Ontology: Its transformation from philosophy to information sys-
tems. In: Proceedings of the International Conference on Formal Ontology in
Information Systems, ACM Press (2001) 187–197

3. Liebowitz, J., Wilcox, L.C.: Knowledge Management and Its Integrative Elements.
CRC Press (1997)

4. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview. Tech-
nical report, W3C (2004)

5. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent
Systems 16(2) (2001) 46–53

6. Martin, D.L., Paolucci, M., McIlraith, S.A., Burstein, M.H., McDermott, D.V.,
McGuinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan,
N., Sycara, K.P.: Bringing semantics to web services: The owl-s approach. In
Cardoso, J., Sheth, A.P., eds.: Semantic Web Services and Web Process Compo-
sition, First International Workshop, SWSWPC 2004, San Diego, CA, USA, July
6, 2004, Revised Selected Papers. Volume 3387 of Lecture Notes in Computer Sci-
ence., Springer (2004) 26–42

7. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the semantic web recommendations. Technical Report HPL-
2003-146, HP Laboratories Bristol (2003)

8. Hatcher, E., Gospodnetic, O.: Lucene in Action. Manning Publications (2004)
9. Hillmann, D.: Using dublin core (2005)

10. Sametinger, J.: Software Engineering with Reusable Components. Springer (1997)
11. Miller, G.A.: Wordnet: A lexical database for english. Communications Of The

ACM 38(11) (1995) 39–41
12. Ding, L., Finin, T.W., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P.,

Doshi, V., Sachs, J.: Swoogle: A search and metadata engine for the semantic web.
In Grossman, D., Gravano, L., Zhai, C., Herzog, O., Evans, D.A., eds.: Proceedings
of the 2004 ACM CIKM International Conference on Information and Knowledge
Management, Washington, DC, USA, November 8-13, 2004, ACM Press (2004)
652–659

13. Pinto, H.S., Gómez-Pérez, A., ao P. Martins, J.: Some issues on ontology inte-
gration. In: In Proceedings of the Workshop on Ontologies and Problem Solving
Methods. (1999)

14. Alani, H.: Position paper: Ontology construction from online ontologies. In Carr,
L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M., eds.: Proceedings of the 15th
international conference on World Wide Web, WWW 2006, Edinburgh, Scotland,
UK, May 23-26, 2006, ACM (2006) 491–495

15. Jackson, P., Moulinier, I.: Natural Language Processing for Online Applications:
Text Retrieval, Extraction and Categorization. John Benjamins (2002)

16. Hyland-Wood, D., Carrington, D., Kaplan, S.: Toward a software maintenance
methodology using semantic web techniques. In: Proceedings of Second Interna-
tional IEEE Workshop on Software Evolvability. (2006)

17. Seaborne, A., Prud’hommeaux, E.: Sparql query language for rdf. Technical report,
W3C (2006)

18. Hyland-Wood, D.: An owl-dl ontology of software engineering concepts (2006)
19. S. Thaddeus, S.V.K.R.: A semantic web tool for knowledge-based software en-

gineering. In: 2nd International Workshop on Semantic Web Enabled Software
Engineering (SWESE 2006), Athens, G.A., USA, Springer (2006)

