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ABSTRACT
Splitting a meeting into segments such that each segment
contains discussions on exactly one agenda item is useful
for tasks such as retrieval and summarization of agenda item
discussions. However, accurate topic segmentation of meet-
ings is a difficult task. In this paper, we investigate the idea
of acquiring implicit supervision from human meeting par-
ticipants to solve the segmentation problem. Specifically we
have implemented and tested a note taking interface that gives
value to users by helping them organize and retrieve their
notes easily, but that also extracts a segmentation of the meet-
ing based on note taking behavior. We show that the seg-
mentation so obtained achieves a Pk value of 0.212 which
improves upon an unsupervised baseline by 45% relative,
and compares favorably with a current state–of–the–art algo-
rithm. Most importantly, we achieve this performance with-
out any features or algorithms in the classic sense.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors, Algorithms.

Keywords: Implicit human supervision, meeting agenda seg-
mentation, meeting note taking, SmartNotes.

INTRODUCTION
Meetings are the fora at which two or more people interact
with each other, often through the speech medium, to discuss
issues, present new ideas, make decisions, etc. Given how
many meetings are held every day around the world, tech-
nologies that automatically assist humans during and after
meetings can be very useful to meeting participants. Typical
assistive tasks include:

• An automatic meeting note taker
• An automatic detector of decisions and action items
• An automatic summarizer of meetings
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Performing each of these tasks automatically requires solv-
ing many difficult research problems, several of which are
currently under investigation. These research problems in-
clude speech recognition in noisy meeting rooms [16, 11, 9],
human activity recognition [15], automatic meeting summa-
rization [12], meeting phase detection [2], action item detec-
tion [13], topic detection [7, 4, 14], etc. Each of these re-
search problems are difficult to solve automatically, hence
truly sophisticated meeting assistance technology has not
made a large impact in meeting rooms around the world.

We are investigating an alternate approach to solving difficult
research problems in the realm of automatic meeting assis-
tance: Namely, by making intelligent use of the human meet-
ing participants themselves. Humans are currently much bet-
ter than automated systems at many tasks. For example, hu-
mans are much better than state-of-the-art automated systems
at telling which topic is currently under discussion. At the
same time, systems must be able to perform many of these
tasks in order to provide higher level services. For example,
a useful service, especially for people who missed a meeting,
is to retrieve the segment of the meeting that contains discus-
sions on a particular agenda item of interest to the listener
[1]. Such a service would need to first segment a meeting
into the agenda items.

In this paper we attempt to leverage the human meeting par-
ticipants to help solve the problem of automatically splitting
a meeting into segments, where each segment contains dis-
cussions on a single agenda item. Such a capability is useful
for multiple higher level capabilities: As mentioned above,
it is necessary for the playback or summarization of discus-
sions on a specific agenda item. Meeting segmentation can
also be useful for capabilities such as automatically remind-
ing meeting participants that they are devoting more (or less)
time than they had planned to an agenda item, automatically
identifying the decisions and the action items, and who they
should be assigned to, etc. To leverage humans, we employ a
technique that we call implicit human supervision, which we
discuss next.

IMPLICIT HUMAN SUPERVISION
Human supervision is routinely employed in building “intel-
ligent” systems, most notably in the field of machine learn-
ing. Typically, humans are asked to perform the task that
the system will eventually perform automatically, resulting
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in labeled data. A system is then trained on this labeled data
to model the human’s actions. To ensure that such systems
generalize to new “unseen” data, it is usually essential that
the training data match the unseen data as closely as pos-
sible. This requirement in turn means that in general a large
amount of data is necessary to cover the variations that can be
expected in unseen data. However, collecting a large amount
of data labeled by human beings is typically a very expensive
task.

One hypothetical way of getting around this requirement for
large amounts of data is acquiring the labeled data from the
actual user of the system. A system trained on such user–
provided data does not need to generalize to other users if the
system is going to be primarily used by this particular user.
Such an approach is adopted in training dictation systems:
The user of the system provides a few hours of training data,
and then the system is adapted to that particular user’s speech
patterns based on that data. (Such systems typically employ a
hybrid approach, and also take advantage of large quantities
of previously recorded speech data from other users).

However, this approach is generally infeasible because users
are reluctant to provide training data for every task that a
system wishes to perform. For example, it is inconceivable
that meeting participants will be willing to manually segment
their meetings into agenda items to provide the system with
training data. Additionally, every time their agenda items
or meeting participants change significantly, their previously
provided labels may not remain useful any more.

This leaves us with the alternative that we call implicit hu-
man supervision: Acquiring supervision from the human
user without requiring him to be aware of the fact that he
is doing so. Such an approach does require two aspects to be
true:

• There must be a human task - a task that the human wishes
to accomplish.

• He must perform this task by interacting with the system.

If these requirements are met, then supervision can be ac-
quired by designing the system’s interface in such a way that
as the human performs his own task, his actions result in la-
beled data as a byproduct, which can then be used to solve
(or greatly help) the task that the system needs to perform.

Observe that no supervision can be obtained if the human
does not use the system’s interface to perform his task. Thus
the system and the interface must provide the user with
enough value to entice him to use this particular interface,
thus constraining the design of the interface. This constraint
in turn constrains the amount of supervision that can be ex-
tracted from the human’s interactions with the system.

Our system’s task is to split a meeting into segments, such
that each segment contains discussions on a single agenda
item. One potential human task in the context of meetings is
that of taking notes at the meeting. Hence, we wish to pro-
vide meeting participants with a note–taking interface such
that, as a participant takes notes in the interface, his actions
result in labeled data that can be used to either directly pro-
duce a segmentation of the meeting, or to greatly help the

Figure 1: A screenshot of the SmartNotes client.

segmentation algorithm. Towards this end we have designed
and implemented the SmartNotes system - a note taking and
retrieval system that users can use to take notes at meetings,
and access the notes afterwards. We describe this system and
its interface in the next section.

THE SMARTNOTES SYSTEM
The SmartNotes system consists of two parts: A desktop ap-
plication, called the “SmartNotes Client” through which par-
ticipants can record their audio and type notes, and a web
based application, called the “SmartNotes Website” through
which participants can access the audio and notes, and write
summaries of previous meetings. We describe these two
components in the following subsections (and also in [3]).

The SmartNotes Client
The SmartNotes Client is a desktop application that meet-
ing participants can use to take notes as well as record their
speech. Each meeting participant is expected to come to the
meeting with a laptop running the client on it, and with a
close–talking microphone connected to the laptop. Figure 1
shows a screenshot of this application being used in a meet-
ing.

Synchronization, Authentication and Joining a Meeting Be-
fore the meeting commences, each participant first starts the
SmartNotes client. Each client synchronizes itself to a sin-
gle pre-specified NTP machine. This ensures synchronic-
ity between event timestamps created by different clients.
Next, the user logs into the client by authenticating himself.
The client authenticates the user by sending his username
and password to a central “Meeting Server”. The advantage
of authenticating each user is that this allows us to trivially
identify the speaker for each utterance, and the note taker for
each line of notes written, instead of having to deduce these
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facts through sophisticated methods. Once authenticated, the
server sends the client the names of the currently running
meetings; the user has the option of either joining one of
these meetings, or “creating” a new meeting. Typically the
meeting leader logs in first and creates a new meeting, and
then the remaining meeting participants join the meeting. By
joining the same meeting, users can share their notes, as de-
scribed below.

Recording Speech As soon as a participant joins a meeting,
his audio starts getting recorded. The application has a “VU-
meter” that continuously shows the user his volume level;
meeting participants can use this VU-meter to adjust their
microphone volume to an appropriate level. (This VU-meter
is visible on the left margin of figure 1). Audio is recorded at
16khz, and uploaded to the Meeting Server opportunistically,
based on network bandwidth availability. The transfer can
continue beyond the end of the meeting, if sufficient network
bandwidth is not available during the meeting. Additionally,
the audio transfer is robust to network loss and power shut-
downs.

Collaborative Note Taking The main function of the Smart-
Notes client is to allow meeting participants to take notes dur-
ing the meeting. Once a user joins a meeting, he is shown the
note taking interface, like in figure 1. This interface consists
of two main note taking areas: The “shared notes” area and
the “private notes” area. Notes typed into the shared notes
area are automatically prepended with the author’s name, and
shared with all other meeting participants. This sharing is fa-
cilitated through the Meeting Server, and occurs in real time
so that at all times, every meeting participant’s shared notes
look exactly the same. To avoid the problem of multiple si-
multaneous edits, participants can only edit/delete their own
notes. Notes typed into the private notes area are not shared
with any other meeting participant.

Agenda Based Note–Taking The goals of this note taking
interface are first to help meeting participants take notes,
and second to automatically acquire labeled data to perform
meeting agenda segmentation. To serve both goals, we al-
low participants to enter the agenda for the meeting into the
interface. (Entering the agenda can be done at any time
and by anyone, although typically it is done at the begin-
ning of the meeting by the meeting leader). The interface
splits the shared notes area (in each meeting participant’s
client) into as many text boxes as agenda items in the en-
tered agenda, and labels each text box with the name of the
corresponding agenda item. In figure 1, the agenda items are
“Data collection”, “Speech recognition status” and “Smart-
Notes and CAMSeg”. Meeting participants are expected to
type notes on a particular agenda item in the box labeled with
that agenda item’s name. This interface design lets the user
easily group his notes by agenda item so that he can later
quickly retrieve all notes on a particular agenda item from
multiple meetings. This design is also useful for acquiring
data for topic segmentation: Every time a user enters a note
under a particular agenda item, the system can conclude that
at approximately that time the meeting participants were dis-
cussing that agenda item. This information can directly lead
to a segmentation of the meeting, as we show below.

Action Item Identifier In addition to taking notes, the meet-
ing participants can also annotate certain notes as being “ac-
tion items” - commitments by one or more participants to
perform certain tasks within a specific time frame. When a
user clicks on the “Action Item” button, he is provided with
a form in which he can enter the details of the action item,
such as what the action is, who is responsible for it, when it is
due by, etc. The advantage to the group is that all the action
items are separately available for future access, and can also
be automatically emailed to participants as reminders before
the next week’s meeting.

The SmartNotes Website
We showed in [1] that meeting participants sometimes need
to retrieve information from past meetings. To address these
needs, the SmartNotes website allows meeting participants to
access the speech and the notes taken in past meetings using
the SmartNotes client. The main goal of the website is to help
users quickly access information from previous meetings. It
is hoped that by making information access easier, users may
be enticed into using the SmartNotes client’s interface in a
way that gives the system better data. For example, once the
users find the feature by which they can access notes from a
single agenda item over multiple meetings useful, they may
feel more encouraged to take notes within agenda item boxes
in the SmartNotes client. Additionally the website provides
more opportunities for acquiring data with which to improve
other system goals besides topic segmentation; discussion of
these goals is beyond the scope of this paper. However, for
completeness, we shall briefly describe the SmartNotes web-
site’s interface.

Meeting participants log in to the website using the same
username/password combination they use to log in to the
SmartNotes client. Once logged in, the system shows the
user a list of all his meetings. The user can click on any meet-
ing to bring up all the shared notes taken during that meeting.
Additionally, he can access the speech from each participant
in that meeting, using the notes as an index. That is, the
user can access n minutes of speech before and m minutes
of speech after each note, from each speaker in the meeting
(or he can listen to the combined audio channels). Finally,
the user can create or access previously created summaries
of the meetings.

BASELINE TOPIC SEGMENTER
Our goal is to segment the meeting time for a given meeting
such that each segment contains discussions on a single topic.
The notion of a topic is ill-defined; humans typically achieve
low inter–annotator agreement when asked to segment texts
and meetings into topics [8]. Since our ultimate goal is to
retrieve sections of the meeting that belong to a particular
agenda item, we use agenda items as the definition of topic.
That is, given a meeting, our aim is to split the time from
the start to the end of that meeting into segments, such that
each segment contains discussions on a single agenda item.
This formulation need not assume that the agenda is provided
to the segmentation algorithm beforehand. However, it does
assume that the meeting participants did follow an agenda
during the meeting. We will show that this formulation does
indeed result in high inter–annotator agreement.
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Our baseline meeting segmentation algorithm is based on
the TextTiling algorithm [10]. An in–depth description of
our adaptation of this algorithm to the context of meetings is
provided in [4]; here we give a brief overview of this algo-
rithm. The algorithm’s input is all the audio recorded during
a meeting, along with the meeting’s absolute start and end
times. The algorithm’s output is a set of time points within
the meeting’s start and end times that the algorithm consid-
ers to be times at which the meeting participants finished dis-
cussing an agenda item, and started discussing another one.

The algorithm proceeds by considering each time point t sec-
onds from the start of the meeting, where t takes values 0, 1,
2, ... till the end of the meeting. For each such time point t,
two windows are considered, one starting at time t − k and
ending at t and another starting at t and ending at time t + k.
For each of these two k–seconds long windows, it constructs
a vector containing the frequencies of the words uttered dur-
ing the window by all the meeting participants, as output by
a speech recognizer or as manually transcribed by a human,
depending upon the experimental setup. Closed class words
such as the articles and prepositions are ignored. Next the
cosine distance between these two vectors is computed, ac-
cording to the formula in equation 1.

cos(v1, v2) =
∑n

i=1 wi,v1wi,v2√∑n
i=1 w2

i,v1

∑n
i=1 w2

i,v2

(1)

Here, v1 and v2 represent the two vectors whose similarity
is being computed, wi,v1 represents the frequency of the ith

word in vector v1 (and similarly, wi,v2 the frequency of the
ith word in vector v2), and n is the size of the vectors. Care
is taken to ensure that each dimension in the two vectors rep-
resents the frequency of the same word in the two windows.
Words that occur in one window but not in the other are con-
sidered to have a frequency of 0 in the other window. For
time points near the beginning and the end of the meeting,
we use smaller values of k to ensure that the windows to the
left and right of any given time point have the same size.

The computed value quantifies how “similar” the word fre-
quencies in the two windows are. Intuitively, the more dis-
similar they are, the more likely it is that those two windows
contain discussions on different agenda items, and conse-
quently that the time point between those two windows is
a topic boundary. After calculating the cosine similarity val-
ues, a depth score is computed for all the time points being
considered in the meeting, as described in [10, 4]. Roughly
speaking, depth scores are non–zero only for the bottoms of
valleys and are higher if the valleys have “tall walls”. Given
these depth scores, a threshold is computed from them (the
mean of the depth scores, plus half their standard deviation),
and all time points with depth scores more than the threshold
are reported as agenda item boundaries.

Observe that this algorithm is almost completely unsuper-
vised; the only parameters that can be tuned are the size of
the window (the value of k in the description above), and the
threshold above which to report boundaries. We set the value
of k to 350 seconds as this value performed well on sepa-
rate held out data. As mentioned above, we follow [10] in

computing the threshold, with the only difference being that
we add half the standard deviation instead of subtracting it;
adding performed better on our data.

The algorithm has no notion of the contents of different top-
ics, and hence cannot be used to identify the topics for label-
ing purposes, for example. This fact is both its strength and
weakness: While it does not need to be pre-trained on the
specific topics in the meeting it needs to segment, its accu-
racy is low (as we shall see in the Evaluation section).

MAKING USE OF IMPLICIT SUPERVISION
As mentioned earlier, we are interested in improving upon
the baseline segmentation results by making use of the im-
plicit supervision provided by the meeting participants through
their note taking in the SmartNotes note taking client. In this
section, we describe three different ways we can take advan-
tage of the implicit supervision.

Notes Based Segmentation
As described previously, meeting participants typically enter
an agenda at the start of the meeting. The SmartNotes client
then splits the shared note taking area into as many boxes
as there are agenda items, each box labeled with the name of
one of the agenda items. Meeting participants then type notes
for each agenda item into the box labeled with the name of
that agenda item. Further, as each note is entered, the system
associates a time stamp with the note. Thus, for each note the
interface captures several pertinent pieces of information:

• Which agenda item box it was typed into
• When it was typed
• Who typed it
• The text in the note

Although we can use all of these pieces of information to
improve segmentation, in this paper we describe the simplest
approach that only uses the first two pieces of information,
that is, which agenda item box the note was typed into, and
when it was typed. Table 1 shows these two pieces of infor-
mation for each line of note in a hypothetical meeting. Using
just these two pieces of information we can arrive at a seg-
mentation of the meeting, as follows.

Note Time stamp (secs Agenda item box the
# from start of meeting) note was typed into
1 100 Agenda item 1
2 150 Agenda item 1
3 170 Agenda item 2
4 230 Agenda item 2
5 250 Agenda item 1
6 290 Agenda item 3
7 350 Agenda item 3

Table 1: Time Stamps and Containing Agenda Boxes
of Typed Notes in a Hypothetical Meeting

We first order the notes according to their time stamps. Next,
for every pair of chronologically consecutive notes that were
typed into different agenda item boxes, we hypothesize a
boundary midway between the time stamps of those two
notes. Thus, in the hypothetical example in table 1, the al-
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gorithm does not hypothesize a boundary between notes 1
and 2, but does hypothesize one halfway between notes 2
and 3, that is at time point 160 seconds from the start of the
meeting. Similarly, there would be no boundary hypothe-
sized between notes 3 and 4, but there would be one halfway
between notes 4 and 5 at time point 240 seconds, and again
one halfway between notes 5 and 6, and so on. Thus, for
this hypothetical example, the boundaries would be at time
points 160, 240, and 270 seconds from the start of the meet-
ing. That is there would be 4 segments in the meeting. We
call this segmentation the notes based segmentation, since it
is completely based on the notes taken by the meeting par-
ticipants, and does not use the speech at all. Also note that
we do not necessarily need to split the distance between the
two notes in the different agenda item boxes precisely in half.
For example, another reasonable candidate might be to split
closer towards the earlier note. In fact, the location of the
split could be empirically determined from data.

Note that this algorithm’s accuracy completely depends on
the note taking behavior of the participants in the meeting.
For example, if the participants discuss an agenda item, but
do not type even a single note on that item, then the notes
based segmentation will not have a segment corresponding
to that agenda item at all. Similarly, if one or more partic-
ipants type notes into one agenda item box while the dis-
cussion is focusing on a different agenda item, then segmen-
tation would also be incorrect. Finally, the quality of the
notes-based segmentation will depend on the lengths of the
gaps between consecutive notes that are in different agenda
item boxes. The larger this gap is on average, the harder it
is to tell where exactly the “real” boundary is. In the Dis-
cussion section we report on an experiment that quantifies
the relationship between the number of notes taken and the
performance of the notes based segmentation.

Modifying the Inputs to the Baseline Algorithm
Although we can derive a segmentation directly from the
notes typed by the user, its accuracy may vary a lot depend-
ing on the note taking behavior of the specific group. How-
ever, instead of simply outputting the notes based segmen-
tation, another strategy could be to use the notes to improve
the baseline algorithm that uses the speech as its input, and
is thus more robust.

The baseline algorithm assumes that all words are equally
important for topic segmentation (except for closed class
words as mentioned above). This is a reasonable assumption,
if nothing further is known in advance about the meeting.
However, if some (perhaps short) segments of the meeting
are labeled with the agenda item they belong to, we can use
these segments to learn which uttered words are indicative of
the individual topics, and which are not.

We can derive such labeled data from the notes by perform-
ing almost the same process as that for deriving segmentation
from the notes, with the following difference. For every pair
of consecutive notes that are in two different agenda boxes,
instead of hypothesizing one boundary halfway between the
two notes, we hypothesize two boundaries, one each at the
time points of the two notes. Thus, for the hypothetical ex-
ample in table 1, the output labeled segments would be:

• Segment 1: Agenda item 1. From 100 to 150
• Segment 2: Agenda item 2. From 170 to 230
• Segment 3: Agenda item 1. From 250 to 250
• Segment 4: Agenda item 3. From 290 to 350

Thus, this algorithm takes the meeting time between consec-
utive notes that are in the same agenda box, and labels that
time with the name of the agenda item of that box. However,
when consecutive notes are in different boxes, it is unclear
when the discussion changed from one agenda item to the
next, so it leaves the entire meeting time between those two
notes unlabeled.

Given these labeled segments, for every agenda item, we cre-
ate a bag containing all the words uttered in all the segments
labeled with the name of that agenda item. This gives us
one bag of words per agenda item. From these bags, we find
those words that occur in only one bag, and that occur at least
twice. These are the words that most differentiate agenda
items from each other. We then run the baseline algorithm
exactly as before, but only using these words in every win-
dow pair, and ignoring all other words. We can use other
measures of association; however, we started with the sim-
plest algorithm possible.

Constraining the Outputs of the Baseline Algorithm
In the modified baseline algorithm described above, we first
identify the most distinguishing words, and then run the same
baseline algorithm as before. Although this improves the re-
sults compared to the original baseline (as shown in the Eval-
uation section), this algorithm still does not directly use any
information from the notes, and thus often predicts bound-
aries that fall between notes that were typed into the same
agenda item box. The simplest way to constrain these outputs
is to simply only output boundaries that lie between consecu-
tive notes that are in different agenda item boxes. We experi-
ment with this simple constraint and report evaluation results
below.

MEETING CORPUS
We have been using SmartNotes in our regular weekly project
group meetings. These are all “natural” meetings, that is,
these meetings would have taken place even if we were not
using SmartNotes. (While the authors participate in these
meetings, the remaining participants are not directly involved
in the research reported in this paper). The form of the meet-
ings is mostly report oriented, where each person in the group
presents progress on his tasks since the last meeting. In ad-
dition to reports, questions are raised and discussed between
team mates, and decisions are made about what next steps
need to be followed the next week. Till the time of going
to press (November 28th 2006), we have collected 26 meet-
ings1. For the results in this paper we use only the first 10
meetings from this sequence. On average, each meeting is
31 minutes long, has 4.1 agenda items , and has 3.75 partici-
pants (ranging from 2 to 5). Each agenda item has on average
5.9 lines of notes in them, for a total of about 25 lines of notes
per meeting. Note of course that these notes include all the
notes taken by all the participants in the meeting in the shared
note taking area.

1We plan to release this data to the research community; please contact the
authors for more information.
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Figure 2: Overall performance for the four approaches,
averaged over the 10 meetings in the corpus. Error
bars are drawn using Standard Error.

Each meeting was manually segmented by two independent
annotators. These annotators were provided with the agenda
of the meeting (but not with the notes) and were asked to
split the meeting into segments such that each segment cor-
responded to one of the agenda items in that list. We com-
pute the agreement between the segmentation produced by
the two annotators using the same metric (Pk) that we use to
evaluate the segmentation algorithms. We describe this met-
ric next, and the inter–annotator agreement in the following
section.

EVALUATION
Evaluation Metric - Pk

We evaluate meeting segmentation using the Pk metric [6].
This metric computes the probability that two randomly drawn
points a fixed time interval k seconds apart from the meeting
are incorrectly segmented by the hypothesized segmentation,
as compared to a reference segmentation, where a “correct”
segmentation requires that both the reference and the hypoth-
esis put the two points in a single segment, or both put them
in different segments. Note that if the hypothesis and the
reference put the two points in different segments, the hy-
pothesis is deemed to be correct for those two points, even if
the hypothesis and the reference predict different numbers of
boundaries between the two points. Following [6], we com-
pute the value of k for a given meeting to be half the average
size of the segments in the reference segmentation for that
meeting. Observe that Pk is a measure of error, and hence
lower values are better. Specifically, Pk ranges between 0
(the reference and the hypothesis segmentations agree on ev-
ery pair of points k seconds apart) and 1 (they disagree on
every point).

Results
Figure 2 summarizes the overall results for the four segmen-
tation approaches over the 10 meeting corpus. Note that for
the algorithms that take spoken words as input (“Unsuper-
vised Baseline”, “Improved Baseline” and “Improved and
Constrained Baseline” in the figure), the speech was auto-
matically recognized using the CMU Sphinx–3 speech rec-

ognizer; across all the participants over the entire set of 10
meetings, the Word Error Rate was 45%. That is, 45% of
the words automatically recognized were incorrect, as com-
pared to human transcription. Although we do have manual
transcriptions for our meeting corpus, we focus on segmenta-
tion results obtained using automatically transcribed speech
since manual transcriptions will in general not be available.
(However, see the Discussion section for segmentation re-
sults using manual transcriptions).

The baseline algorithm achieves an average Pk of 0.387
(standard deviation: 0.096), ranging from 0.272 to 0.543.
This implies that in approximately 38.7% cases, the algo-
rithm mis-segments a randomly drawn pair of points from the
meeting. On the other end of the spectrum, the purely notes
based segmentation achieves an average Pk of 0.212 (stan-
dard deviation: 0.099), ranging from 0.085 to 0.382. This
result represents a 45% improvement over the baseline algo-
rithm, and is a significant improvement (p < 0.01, using the
Wilcoxon matched–pairs signed–ranks test).

Using the notes based segments to learn the utterance words
that are most strongly correlated with the segments results in
the “improved baseline” - the 2nd bar from the left in figure
2. This algorithm achieves a Pk of 0.288 (standard deviation:
0.148), ranging from 0.052 to 0.571. This result represents
a 25% improvement over the unsupervised baseline, and the
improvement is significant (p < 0.01 using the Wilcoxon
test). The 3rd bar from the left in figure 2 represents the
same improved baseline as above, but where the outputs of
the algorithm are constrained so that there are no bound-
aries between chronologically consecutive notes that are in
the same agenda box. This algorithm achieves an average Pk

of 0.208 (standard deviation: 0.121), ranging from 0.060 to
0.423. This result represents a 46% improvement over the
baseline, and is a significant improvement (p < 0.01, using
the Wilcoxon test). Although this Pk value is slightly lower
than that achieved by the notes based segmentation, the dif-
ference is not statistically significant.

DISCUSSION
Benchmarking Against [14]
To benchmark our meeting segmentation results against an
independent state–of–the–art algorithm, we invited the au-
thors of [14] to run their algorithm on our 10–meeting cor-
pus. This algorithm uses an unsupervised generative topic
modeling technique to segment multi–party discourses into
topic segments. The algorithm was run on our corpus and,
for each utterance in each meeting, it produced the prob-
ability that there was a change in agenda item at the end
of that utterance. For each meeting, a threshold value was
manually set, and all utterances with boundary probabilities
greater than this threshold were marked as boundaries. A dif-
ferent threshold was set for each meeting to ensure that the
algorithm produced exactly as many segments as the human
annotator produced for that meeting; in a production system
this threshold value can potentially be computed automati-
cally based on the number of notes–based segments. This
algorithm achieved an average Pk of 0.257 over the 10 meet-
ings when run using the words output by the speech recog-
nizer, and a Pk of 0.277 when using the manually transcribed
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speech. Although both the purely notes based segmentation
and the improved and constrained baseline outperform this
segmentation (by 21% and 24% relative respectively), these
differences are not statistically significant. Thus, we con-
clude that the notes based segmentation performs as well as
a state–of–the–art segmentation algorithm.

The Quality of the Notes Based Segmentation
As noted above, the purely notes based segmentation per-
forms exceedingly well – significantly better than the un-
supervised baseline algorithm (45% relative improvement)
and somewhat better than the state–of–the–art (although this
difference is not statistically significant). This result shows
the effectiveness of the idea of leveraging the human in the
loop to implicitly acquire a solution to a problem. Observe
that none of the meeting participants in these meetings were
asked to split meetings into segments. They were simply
given this interface and informed about the advantages (to
them) of taking notes in the interface. The design of the
interface produces a highly accurate segmentation directly
from the users’ note taking behavior. Further observe that the
purely notes based segmentation was achieved without per-
forming any speech recognition or feature extraction, or by
applying any “sophisticated” algorithm in the classic sense.

One obvious drawback of this algorithm is that it is heavily
dependent on the users’ note taking behavior. For example,
one would expect that if users took fewer notes than they
did in our corpus, the notes based segmentation would suf-
fer. To test the effect of a reduced number of notes on the
performance of the notes based segmentation, we performed
the following experiment. For each meeting, we randomly
deleted X% of the notes (X varying from 0 to 100 with a step
size of 10), performed the purely notes based segmentation
using the remaining notes, and computed the Pk value. For
each value of X , we repeated this experiment 1000 times,
each time deleting a different random set of notes, and com-
puted the average Pk over all meetings over all iterations.

Figure 3 shows a plot of the average Pk against the percent-
age of notes dropped. Observe that at X = 0, no notes are
dropped, and the Pk is 0.212 as reported in the Evaluation
section. At X = 100, all the notes are dropped, and no seg-
ments are created. The Pk value at this point is meaningless.
At X = 30%, the Pk value (0.249) is still better than that ob-
tained by the state–of–the–art algorithm (0.257). Thus even
with 30% less notes than that taken by the participants in our
corpus, the notes based segmentation performs as well as the
state–of–the–art algorithm. Further, even at X = 70%, the
Pk value (0.348) is better than that produced by the unsuper-
vised algorithm (0.387). This implies that even if we have
only 30% of the notes taken by the participants in our cor-
pus, we can outperform the baseline unsupervised algorithm.
These numbers are not surprising since the notes based seg-
mentation algorithm only depends on how close the last note
of one agenda item and the first note of the next agenda item
are to the actual boundary between the two agenda items.

Other ways in which the quality of the notes based segmenta-
tion can be compromised include situations where users type
notes on one agenda item while they are discussing another
agenda item (either erroneously, or on purpose). We did not

Figure 3: Performance of Notes Based Segmentation
after Deleting a Random X% of the Notes.

experiment with this situation, but in general plan to test the
notes based segmentation algorithm on different groups of
people to assess its efficacy with varying human note–taking
habits.

The Quality of the Other Algorithms
The “Improved baseline” that uses the notes based segmenta-
tion to learn the words that are correlated with the segments
did not perform as well as we had hoped. This is perhaps
because of a data sparcity problem, which can potentially be
alleviated by accumulating the learning over multiple meet-
ings which we shall attempt in the future. Using the notes
based segmentation to constrain the “learned” segmentation
performed as well as the notes based segmentation itself, but
not better as we would have hoped. Perhaps a better approach
would be to also look for “cue phrases” (topic independent
phrases that signal topic boundaries, such as “moving on...”),
as has been done by [6, 7].

Using Manual Speech Transcriptions
As mentioned earlier, our focus is on evaluating our various
agenda segmentation algorithms using automatically recog-
nized speech. However, to see the effect of the errors in
such automatic transcripts on segmentation performance, we
also ran all our experiments on manually transcribed speech.
For the “Unsupervised Baseline” algorithm, the Pk improved
from 0.387 to 0.339 by using the manual transcriptions, and
this improvement was moderately significant (p < 0.05 us-
ing the Wilcoxon test). For the “Improved Baseline” algo-
rithm, the difference was not statistically significant. For
the “Improved and Constrained Baseline” algorithm, the Pk

value improved from 0.208 to 0.152 by using manual tran-
scripts, and this improvement was statistically significant
(p < 0.01 using the Wilcoxon test). Finally, the algorithm
described in [14] did not experience a statistically signifi-
cant improvement in segmentation performance by using the
manual transcripts. It is unclear why the “Improved and
Constrained Baseline” algorithm benefited so much from the
manual speech transcripts whereas the “Improved Baseline”
algorithm did not. Further experiments are needed to under-
stand the cause of this phenomenon.
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Inter–Annotator Agreement
As mentioned above, each meeting in the corpus was man-
ually segmented into agenda items by two independent hu-
man annotators. To compute the degree of agreement be-
tween their annotations, we follow [8] and simply compute
the Pk between the two annotations. Since the choice of
the reference affects the value of k (the distance between
the two probe points in the calculation of Pk), we chose to
perform this computation twice, each time using a different
person’s annotation as the reference. The resulting average
Pk value over the 10 meetings was 0.062 (standard devia-
tion: 0.049), regardless of the choice of reference annotation.
These agreement numbers show that there is a lot of room
for improvement for the automatic segmentation algorithms.
Additionally, these agreement numbers are also substantially
better than those reported in [8]. Several factors may have
contributed to these high levels of agreement. First the con-
cept of an agenda item is better defined than that of a “topic”
as defined in [8]. Second, the meeting participants in our cor-
pus typically displayed a somewhat disciplined adherence to
the agenda at hand, unlike many of the meetings annotated in
[8]. Finally, and perhaps most crucially, our annotators had
access to the list of agenda items in the meeting they were
annotating, whereas the annotators in [8] were asked to iden-
tify the topics in addition to segmenting the meetings into the
topics, which can introduce further variability between anno-
tators.

RELATED WORK
Implicit Human Supervision
Leveraging humans “in the loop” has been investigated in
various formulations in the past, such as the work on Human
Computation, most popularly exemplified in the ESP Game
[17]. In this research, the notoriously difficult task of la-
beling images is transformed into a web–based two–player
game in which randomly chosen pairs of humans try to asso-
ciate the same image with the same label at the same time.
People play the game because it is fun, and as a by–product
a difficult research problem gets solved. Additional games to
create boundary boxes for objects in an image [19] and to col-
lect common–sense facts [18] have also been implemented.
Our work is similar in that we create an interface such that
as the humans perform their own task (note taking), they un-
wittingly solve the system task (meeting segmentation). The
difference lies in the fact that in our case, the design of the
interface is constrained by the human task, and we cannot
“invent” new tasks the way new games are invented.

There is a similarity between implicit human supervision and
the field of active learning where systems seek labels for in-
formative data points from a human. Unlike active learning
though, we assume that the human is unwilling to perform
labeling, so we must get the labels implicitly.

Meeting Topic Segmentation
As mentioned above, our baseline algorithm is a straight–
forward adaptation of the classic Marti Hearst TextTiling al-
gorithm [10] to the domain of meetings. Other approaches to
topic segmentation include that of Beeferman et. al. [6] who
use adaptive language models and “cue phrases” (phrases
that typically occur near topic boundaries) to segment news

transcripts into separate stories. Their application area is dif-
ferent from ours in that the topics discussed at a meeting are
likely to be more strongly related to each other than stories
in a newscast. Barzilay and Lee [5] present an HMM based
method for learning models of topics and topic transitions in
a specific domain from example texts in that domain. Closer
to our application area is work done by Galley et. al. [7].
Their goal is to find topic segments in meetings by first find-
ing chains of repeated words that overlap between adjacent
windows of a meeting, and by training a decision tree clas-
sifier that uses features such as silences, speaker turns, cue
phrases etc. Finally, as mentioned earlier, Purver et. al. [14]
present an unsupervised generative model that learns topic
models from unlabeled data.

CONCLUSIONS
In this paper we have explored the general idea of solving a
difficult system task by acquiring implicit supervision from
the actions of the human users of the system, as they interact
with the system to perform their own tasks. We have applied
this paradigm to the task of automatically splitting a meeting
into segments such that each segment contains discussions
on a particular agenda item. To perform this task, we have
designed a note taking interface such that as the human meet-
ing participants take notes in a meeting, their actions result
directly in a segmentation of the meeting. We have eval-
uated this segmentation on a 10 meeting corpus, and have
shown that we can achieve a Pk of 0.212, which represents
a 45% relative improvement over an unsupervised baseline,
and also compares favorably with segmentation produced by
a state–of–the–art algorithm on the same data. Further, we
have attempted to learn to improve the baseline segmenta-
tion from this notes–based segmentation, and have shown
that such learning results in a modest improvement over the
baseline algorithm.

FUTURE WORK
There are many interesting future directions for this work.
First, as mentioned earlier, the notes based segmentation
does not perform well if there are not enough notes in a meet-
ing. One way to get around this problem is to train a classi-
cal topic segmenter using the notes based segmentation from
meetings where there are a large number of notes, and ap-
plying the segmenter to segment meetings that have fewer
or no notes. Second, we plan to evaluate our algorithms on
different groups of people with different note taking habits
to quantify the quality of the implicit supervision that can be
derived from note taking. More generally, we would like to
pursue more experimentation on the general idea of solving
system tasks by acquiring supervision from a human task.
For example, we can attempt to try and automatically detect
those times in the meeting at which participants are likely to
take notes, based on users’ observable note taking behavior.
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