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ABSTRACT
Member-maintained communities ask their users to perform
tasks the community needs. From Slashdot, to IMDb, to
Wikipedia, groups with diverse interests create community-
maintained artifacts of lasting value (CALV) that support the
group’s main purpose and provide value to others. Said com-
munities don’t help members find work to do, or do so with-
out regard to individual preferences, such as Slashdot assign-
ing meta-moderation randomly. Yet social science theory
suggests that reducing the cost and increasing the personal
value of contribution would motivate members to participate
more.

We present SuggestBot, software that performs intelligent
task routing (matching people with tasks) in Wikipedia. Sug-
gestBot uses broadly applicable strategies of text analysis,
collaborative filtering, and hyperlink following to recom-
mend tasks. SuggestBot’s intelligent task routing increases
the number of edits by roughly four times compared to sug-
gesting random articles. Our contributions are: 1) demon-
strating the value of intelligent task routing in a real deploy-
ment; 2) showing how to do intelligent task routing; and
3) sharing our experience of deploying a tool in Wikipedia,
which offered both challenges and opportunities for research.

Keywords: online communities, member-maintained com-
munities, Wikipedia, intelligent task routing, recommender
systems

ACM Classification: H.5.3 [Information Interfaces and Pre-
sentation]: Group and Organization Interfaces—Collabor-
ative computing

Introduction
Why can’t Dfrankow find articles to edit in Wikipedia? The
opportunities are endless; the English version has over 1.2
million articles and the Community Portal page lists dozens
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of ways to contribute. Whether members are particular about
punctuation, interested in images, or suckers for soccer, the
portal can help them participate. New members might not
be aware that the portal exists, but Dfrankow has made over
100 edits and is aware of it. He has diverse interests: music,
the environment, computers, and vegetarian cooking. Yet he
says it is hard to find articles that both need work and that he
would like to work on.

These problems are not unique to Dfrankow, nor to Wiki-
pedia. They arise in other member-maintained communities
that solicit contributions from their users to perform tasks the
community needs to function. Communities like Slashdot,
Amazon, and digg ask members to evaluate the quality of
other members’ contributions, aggregating these judgements
to perform distributed moderation [21]. Groups like Wiki-
pedia and Distributed Proofreaders, a group of volunteers
transcribing books into electronic forms for Project Guten-
berg, welcome and mentor new members [32]. Many groups
create community-maintained artifacts of lasting value, or
CALVs [7], databases that support the group’s main purpose.
For example, rateyourmusic.com has created a database of
over a million songs. The database is not the goal; rather, it
is a tool that allows its members to make lists of songs and
talk about them. IMDb’s database of movies, the ChefMoz
restaurant directory, and Wikipedia’s articles are all built by
members and provide value to millions of people. Many
other communities build group-specific resources.

Most member-maintained communities don’t help members
find work. Few directly ask members to perform specific
tasks; those that do fail to consider individuals’ preferences
when assigning tasks. Slashdot assigns meta-moderation
randomly. Distributed Proofreaders categorizes texts into
difficulty levels, but doesn’t try to match people with appro-
priate tasks. Wikipedia provides dozens of ways to help, all
of which are impersonal: randomly chosen and alphabeti-
cal lists of articles that need work, articles that many people
would like to see created, and so on.

Yet social science theory suggests reducing the cost of contri-
bution will increase members’ motivation to participate. One
way to do so is to make it easy to find work to do. Technolo-
gies such as information retrieval and recommender systems
help people find valuable items to consume in a sea of pos-
sible choices, thus reducing their search costs. Communities
might use these technologies to match members with appro-
priate work, increasing the ultimate value of the community.
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Figure 1: The current version of SuggestBot, making
suggestions to Garykirk. The interface explains how
and why he got these suggestions, and groups them by
the type of work needed. He has edited and checked
off several of the suggested items.

We call matching people with appropriate tasks intelligent
task routing. In this paper, we describe SuggestBot, a system
for intelligent task routing in Wikipedia. We first present
theories and prior work that support the use of intelligent
task routing as a mechanism for increasing contributions. We
next describe how Wikipedia’s extensive historical data and
active community shaped the design of SuggestBot, followed
by a description of how it works. Figure 1 depicts a page of
suggestions for a Wikipedia user named Garykirk. To cre-
ate the suggestions, it used Garykirk’s history of edits as in-
put to simple, general recommendation algorithms based on
text matching, link following, and collaborative filtering. We
close by evaluating SuggestBot. On average, the intelligent
algorithms produce suggestions that people edit four times
as often as randomly chosen articles. This large difference
suggests that intelligent task routing is a powerful tool for
encouraging contributions to communities.

Intelligent task routing, theory and practice
CommunityLab is a collaboration between the University of
Michigan, the University of Minnesota, and Carnegie Mel-
lon University. This project uses social science theories con-
cerning motivation to design systems that increase participa-
tion in online communities. We have studied how contribu-
tions to groups are affected by goal-setting [1], knowing who
benefits from a contribution [26, 34], the effect of similar-
ity to other group members [9, 27], linguistic characteristics

of discussion posts [18], the costs and benefits of contribut-
ing [13], and editorial review [6]. Here, we bring Commu-
nityLab techniques to bear on the challenge of intelligent task
routing. Both economics and social psychology suggest that
reducing the cost of contributing will increase people’s mo-
tivation to do work for a community.

Economics provides the theory of public goods [11]. Public
goods have two special characteristics. First, once they are
produced, anyone can use them. Second, they cannot be used
up by any one person. National defense and public radio are
examples. The theory states that groups generally produce
less than the optimal amount of a public good because mem-
bers have an incentive to use the work of others instead of
making contributions. This free riding behavior has been
demonstrated in a number of laboratory experiments [24].
Thorn and Connolly use public goods theory to model discre-
tionary databases, which are similar to CALVs in that they
are online, are shared by a group, and contributions to the
database are voluntary [5]. Their work shows that, as pub-
lic goods theory predicts, lowering the cost of contributing
increases contributions to the database.

In social psychology, Karau and Williams’ collective effort
model addresses social loafing, the observation that people
often contribute less toward group tasks than they would if
they performed the same task individually [22]. The model
integrates a number of explanations of social loafing (e.g.,
[12, 19]). It predicts that reducing costs and increasing the
value of outcomes will increase motivation. Since intelligent
task routing reduces the cost of finding work and matches
people with tasks they are likely to care about, it should in-
crease people’s motivation to contribute.

We used the collective effort model to shape our first study
of intelligent task routing [7]. The goal was to increase how
often members corrected information in the MovieLens web
site’s database by matching members with movies they were
likely to edit. The study compared four very simple strategies
for choosing movies based on the collective effort model:
choosing random movies, choosing movies the person was
predicted to like, choosing movies that were missing the most
information in the database, and choosing movies the person
had previously rated. Choosing movies with high predictions
did worse than random. Choosing movies that were missing
the most information did better than random, but the winner
by far was to choose rated movies. Four times as many peo-
ple in that group edited at least one movie compared to the
other groups.

We believe this is because people who had seen a movie al-
ready knew much of the pertinent information for Movie-
Lens, such as actors, directors, and language. Knowing this
information reduced the cost of making a contribution and, as
theory predicted, increased people’s motivation to contribute.
Rating a movie is also a tangible indicator of interest in the
movie. From a public goods point of view, people might see
more benefit to editing movies they are interested in, reduc-
ing the net cost of contributing. The collective effort model
also predicts that people will be more motivated to perform
tasks where they value the outcome. Correcting information
for a movie they one cares about is more likely than correct-
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ing a random movie, or one that MovieLens thinks one will
care about but has not yet seen.

The MovieLens experiment suggests that task routing is use-
ful for member-maintained communities. However, editing
movie information requires little expertise and modest effort.
We were able to work inside of MovieLens and exert a great
deal of experimental control. Also, our strategies were very
simple. To increase our confidence that intelligent task rout-
ing is generally useful, we decided to test more interesting
strategies in a less controlled environment that required more
effort from contributors. This led us to Wikipedia.

Studying Wikipedia as an encyclopedia
Wikipedia has sparked researchers’ curiosity, especially in
the areas of knowledge management and computer-mediated
communication. As Lih says, “Unlike typical creative ef-
forts, no proof of identity or qualifications is needed to par-
ticipate and a reputation tracking system is not used within
the community. Given the description of how a wiki works,
visitors to Wikipedia are often surprised the site works at
all.” [25] But work it does. Wikipedia exists in dozens of
languages, ten of which have over 100,000 articles. Many
people contribute: almost 23,000 people made at least five
contributions each to the English version in December 2005.
Measuring and understanding the growth of Wikipedia is it-
self an interesting question to some researchers [41].

Wikipedia makes much of its content available for offline
analysis through occasional XML dumps of its database. The
information is released under several copyright licenses, pri-
marily the GNU Free Documentation License. Wikipedia
produces both current and full dumps. Current dumps are
snapshots of the database that contain the most recent version
of each page. It is straightforward, though slow, to create a
local mirror of Wikipedia by importing a current dump into
a copy of MediaWiki, the software that runs Wikipedia. Full
dumps contain every revision of every page in Wikipedia,
including information about who edited which pages. A full
dump of the English version is very large—the May 18, 2006
dump is about 700 GB uncompressed.

This historical data has a number of uses, including comput-
ing summary statistics [41] and analyzing patterns of behav-
ior, such as the quick reversion of malicious edits [40]. Sev-
eral researchers have used this data to understand the qual-
ity of Wikipedia articles. Lih used the number of edits, ed-
itors, and distinct editors as factors for predicting the qual-
ity of articles [25], a direct application of the notion of edit
wear [16]. Emigh and Herring analyzed formality of lan-
guage to compare Wikipedia and Everything2 to other ency-
clopedias [10]. Stvilia et al. built models using computed fea-
tures such as median revert time and text readability scores to
predict whether an article is high quality [39]. Humans cur-
rently tag articles that need work; these models could direct
people’s energy toward improving articles rather than flag-
ging problems. Similar metrics might be useful for intelli-
gent task routing in other systems as well.

Studying Wikipedia as a community
Wikipedia is not just an encyclopedia; it is also a commu-
nity. A number of researchers have studied how and why

people participate in building the encyclopedia and become
part of the community. Ciffolilli and Stvilia et al. compared
Wikipedia to the open source movement [4, 39]. In this ac-
count, open content and open source are similar, and people
participate for the same kinds of reasons: learning, status,
belonging, and so on. Lakhani and von Hippel focused on
how learning from others reduces the cost of contributing to
a forum devoted to support issues around the Apache web
server [20]. This finding dovetails nicely with our earlier
analysis that reducing contribution costs is important.

Bryant et al. studied how people become regular contribu-
tors to Wikipedia [2]. They use activity theory [31] and the
notion of legitimate peripheral participation in communities
of practice [23] to analyze interviews with nine experienced
Wikipedians. Contributors progress from novices who work
mostly on editing articles that interest them to experienced
users who work both on articles and on meta-level tasks such
as mediating disputes, determining policies, and building the
Wikipedia community. One important way novices grow to-
ward doing meta-level tasks is by discovering tools useful for
those tasks in the course of their normal editing activities. If
intelligent task routing can help people find more articles to
edit in Wikipedia, they might grow more quickly into expe-
rienced contributors. For now, SuggestBot only recommends
articles to edit. In principle, it could suggest other tasks such
as categorizing articles, resolving editing disputes, and wel-
coming newcomers.

We extend others’ efforts to understand and quantify con-
tribution behavior in Wikipedia by trying to increase contri-
butions through recommendations. Because Wikipedia is a
community, we had to act as part of the community, respect-
ing the policies and the norms of Wikipedia. Both imposed
constraints on our experimental manipulations. We detail our
experience to help other researchers interested in exploring
Wikipedia as a research test-bed.

SuggestBot is, as the name suggests, a bot. Wikipedia bots
are user accounts that computer programs use to make semi-
automated or automated edits. Most bots perform mechani-
cal tasks such as expanding template text and repairing links.
Bots are governed by a simple policy1: “The burden of proof
is on the bot-maker to demonstrate that the bot is harmless, is
useful, is not a server hog, and has been approved.” Bots that
do not follow the rules are blocked by administrators. Sug-
gestBot makes some compromises to avoid being a server
hog. For instance, it only checks whether an article needs
work every few weeks. Ideally it would check that every ar-
ticle it recommends still needs work, but this would require
downloading the full text of every recommendation. We also
did our development and testing against a local Wikipedia
mirror to reduce our impact on the live site.

Bots must be approved by a committee of experienced users,
many of whom have written bots themselves. The process
consists of posting a description of the bot and reacting to
feedback until the committee gives approval. Part of the
approval discussion for SuggestBot centered on discovering
users’ interests. Many users keep watchlists of pages they

1http://en.wikipedia.org/wiki/WP:B
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Figure 2: The pilot version of SuggestBot making sug-
gestions to DonnEdwards. Note the message might
be one of many on a user’s talk page; here, it is below
a welcoming message.

monitor for changes. This sounded promising, but an experi-
enced user pointed out a flaw.

“I’ve reviewed the things on my watchlist, and I’m not
so sure that they are representative of my interests (at
least some things are listed because they were things I
thought that should be deleted, some I thought should be
merged, and some were things that I can no longer recall
why they were originally watched, etc.)”

Misunderstanding Wikipedia norms caused us to make two
bad decisions. Our original plan was to use SuggestBot to
help people who had contributed a few times become regu-
lar contributors. Wikipedia has a welcoming committee that
gives new editors information on how to make effective con-
tribution and encourages them to do so. Welcome messages
and other user-to-user communication are posted to user talk
pages. These pages are used to resolve editing disputes, orga-
nize collaborations, praise, criticize, and just plain be social.
Figure 2 shows two messages for Wikipedia user DonnEd-
wards, one from the welcoming committee and the other
from SuggestBot.

One bad decision was to randomly choose who received rec-
ommendations in an effort to exert experimental control and
avoid self-selection bias. This seemed reasonable because
we were following the welcoming committee’s lead. New
editors don’t choose to be welcomed—they simply receive
messages from welcoming committee members. But there
is a big difference between SuggestBot and the welcoming
committee. New users who receive welcomes can find out
about the welcoming committee, understand its purpose, dis-
cover that it is an established social feature on Wikipedia,

Work type Description Count
STUB Short articles that are missing

basic information
355,673

CLEANUP Articles needing rewriting, for-
matting, and similar editing

15,370

MERGE Related articles that may need to
be combined

8,355

SOURCE Articles that need citations to
primary sources

7,665

WIKIFY Articles whose text is not in
Wikipedia style

5,954

EXPAND Articles longer than stubs that
still need more information

2,685

Table 1: Work types that SuggestBot recommends,
along with an approximate count of articles that need
each type of work as of May 2006.

and find that many of its members are longtime contribu-
tors. New users who received SuggestBot suggestions could
find out that it was an experimental feature run by a member
who had very little history in Wikipedia. This surely worked
against SuggestBot. Almost everything on Wikipedia is opt-
in: users decide whether to edit an article, whether to join a
Wikiproject (a group of members who work on a common
task), whether to become more involved in the community,
etc. We changed SuggestBot from a push to a pull model,
giving suggestions only to people who requested them.

Our second bad decision was to post short notes on users’
talk pages instead of putting the suggestions directly on the
talk page. We feared we would be perceived as spammers
and wanted to minimize that perception. This was a mistake.
Requiring an extra click to access the actual suggestions most
likely reduced the number of people who saw them. Fur-
ther, the purpose of the talk page is to communicate; adding
a layer of indirection was unusual. The current version of
SuggestBot posts suggestions directly to a user’s talk page.

SuggestBot
We now describe the current version of SuggestBot. Fig-
ure 3 gives an overview of its architecture. SuggestBot has
four major pieces: pre-processing Wikipedia dumps, model-
ing users’ interests, finding candidate articles to recommend,
and making the recommendations. We describe each in turn.

Pre-processing
SuggestBot does extensive pre-processing of historical Wiki-
pedia data. It creates a local mirror of a current dump, then
augments it with tables that support recommendations based
on text similarity and following links between articles. It
also uses the full dump, extracting information about who ed-
its which articles to support a recommendation engine based
on co-editing activity. Finally, it does pre-processing to find
articles that need work. As mentioned earlier, people tag
articles they think need certain kinds of work such as im-
proving writing, expanding content, adding references, and
so on. There are dozens of such tags; SuggestBot recom-
mends articles that need six kinds of work, as shown in Table
1. We chose these work types because they are the most fre-
quently used work types on Wikipedia. Another Wikipedia
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Figure 3: SuggestBot’s architecture. It pre-processes Wikipedia data, combining it with user profiles based on edit history
as input to several recommendation engines. It combines the results of the engines in order to make suggestions.

bot, Pearle, maintains lists of articles that need each type of
work. Rather than re-implement this functionality, Suggest-
Bot uses Pearle to track which articles need work. Stubs are
an exception. Pearle does not keep a full list of stubs, so
SuggestBot extracts stubs from the full dump file.

Modeling interests
To make recommendations for a user, SuggestBot must model
the user’s interests. We had to make two key choices: how
to represent interest profiles, and whether to construct pro-
files explicitly or implicitly. We chose to represent a profile
as a set of article titles rather than, say, extracting keywords,
because several of our recommendation algorithms are most
naturally expressed by connections between articles. We also
chose implicit over explicit profiles. Explicit profiles are less
noisy than implicit ones, but asking users to create interest
profiles imposes costs [30]. It is often difficult for people to
explicitly express their interests. Web search is a notorious
example [38], even for experts [17].

Our next task was to choose behaviors that indicate interest
in an article. Wikipedians engage in a variety of behaviors
we considered using as implicit interest indicators:

• Reading articles. However, Wikipedia does not publish
reading activity. This may be just as well; the comScore
World Metrix Internet tracking system estimated that Wiki-
pedia had 131 million unique visitors in May 2006.

• Keeping watchlists. Watchlists would likely be more use-
ful than lists of articles read, but are not publicly available.
Also, as described earlier, some people use watchlists to
track articles that do not reflect their interests.

• Making contribution lists. Some members explicitly list ar-
ticles they have created or contributed to on their personal
pages. However, most do not, and there is no standard for-
mat for listing one’s contributions.

• Editing articles. Anyone can view the complete editing
history of any Wikipedia user by choosing the “User con-

tributions” link from that user’s personal page. This infor-
mation is also available from dump files.

Because of the problems with using these other behaviors, we
chose to use editing articles as our implicit interest indicator.
When SuggestBot receives a user’s request for recommenda-
tions, it fetches from Wikipedia a list of articles that user has
edited. It ignores edits to pages that are not articles, such as
talk pages. To avoid hogging the server, it retrieves no more
than 500 articles per user.

After retrieving the list of articles, it performs simple filter-
ing. As with most implicitly built profiles, there is noise.
People often edit articles they have no personal interest in,
for example, when they revert vandalism. Vandalism often
occurs to the most popular and most controversial articles.
For people who perform a lot of vandalism reversion,2 some
recommender algorithms are prone to suggest controversial
and often-edited items, as this early user pointed out: “[Sug-
gestBot] is sending me to the most controversial articles on
WP. Crazy.” We added a filter that removes edits that appear
to be vandalism reversion. Experienced users mark vandal-
ism reversion by adding “rv” or “revert” to their comments,
so SuggestBot ignores these edits.

Finally, SuggestBot treats multiple edits of an article as a
single edit, collapsing the list of remaining edits into a set.
Doing so gives each edited article equal weight and improves
performance, especially for the text-based and links-based
recommenders. A user’s profile, then, is the set of article
titles left after removing reversions and duplicates.

Finding candidate articles
After building a profile, SuggestBot chooses articles to rec-
ommend. In MovieLens, choosing movies a user had rated

2Sadly, this is such a common task that Wikipedia has a team called
the Counter-Vandalism Unit. See http://en.wikipedia.org/wiki/Wikipedia:
Counter-Vandalism Unit.
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Figure 4: A hypothetical set of links between a set
of articles. For a user who has only edited A, after
two expansion steps the profile will be (A = 1, B =
2, C = 2, D = 3, E = 0, F = 2).

greatly increased contributions. A naive mapping of this
finding to Wikipedia would recommend articles people had
already edited. Editors, however, hated seeing this kind of
recommendation:

“...11 of the 34 articles suggested were actually started
by me, and I have edited one of the others as well...it
might be more useful to exclude articles that one had
already edited.”

Some MovieLens members reported frustration when they
were recommended movies they had already edited. There-
fore, we only allow SuggestBot to recommend articles a user
has never edited before. But, which articles? We believe rec-
ommending items people had rated was effective in Movie-
Lens because this strategy often suggested movies that peo-
ple were interested in and knew about. SuggestBot assumes
people are most likely to be interested in and know about ar-
ticles that are related to those they have previously edited.
SuggestBot’s recommendation algorithms implement three
different notions of relatedness: similarity of text, explicit
connections through links, and implicit connections through
co-editing activity. We discuss each in turn.

Text similarity The text similarity recommender creates a
keyword query by concatenating the titles of articles in the
user’s profile and removing stopwords. It uses MySQL 4.1’s
built-in fulltext search against the full text of articles to re-
trieve a list of recommended titles. We chose this text search
engine mainly for convenience; MediaWiki uses MySQL al-
ready and we hope some day to add SuggestBot to Media-
Wiki. To improve performance, we built a reduced version of
the index, eliminating common and very uncommon terms,
and used article titles as queries instead of the full text of
articles.

Explicit links The links recommender exploits links users
have created between articles. This is similar to using ci-
tation networks in recommending research papers [8, 28].
Pseudocode for the links recommender is shown in Algo-
rithm 1. It sees Wikipedia as a directed graph where arti-
cles are nodes and links are edges. It starts with the set of
articles in a user’s profile, then expands the profile by fol-

Algorithm 1 Links recommender.
Param: T {the set of items in target user t’s profile}
Param: N {number of requested recommendations: 2500}
Param: MaxD {the maximum depth to crawl: 2}
Param: BestL {preferred number of links to articles: 20}

{Initialize items in the profile to have a score of 1.}
for all items i do

i.score ← 1 if i ∈ T, 0 otherwise
end for
depth ← 0
{Expand profile until we have enough articles}
while depth < MaxD and (|i| with i.score > 0) < N do

for all links to items l from items with i.score > 0 do
l.score ← l.score + 1

end for
depth ← depth + 1

end while
{Remove items from original profile.}
for all items i ∈ T do

i.score ← 0
end for
{Penalize items with many or few links.}
for all items i with i.score > 0 do

L ← number of links to i in Wikipedia
i.score ← i.score/log(count of articles/abs(BestL −
L))

end for
Return: The first N items sorted by descending i.score

lowing links. It ignores date-related links such as “1970” or
“June 15” that lead to large lists of unrelated articles. Arti-
cles get credit each time they are found during the expansion
process. Articles found early on get more credit because, at
every expansion step, all links from articles in the profile are
followed, including links that had already been traversed at
prior steps.

Figure 4 shows an example where the user has only edited
item A. After initializing, the scored profile is (A = 1, B =
0, C = 0, D = 0, E = 0, F = 0). To expand the profile,
the algorithm follows all links from every item in the profile.
In this case, the expanded profile is (A = 1, B = 1, C =
1, D = 1, E = 0, F = 0). After a second expansion step,
the profile is (A = 1, B = 2, C = 2, D = 3, E = 0, F = 2).
Note that the link from A to C is followed twice, once at each
step. In this example, E will never be recommended because
no articles link to it. Future variations of the algorithm might
look at in-links as well as out-links.

Profile expansion stops when the needed number of articles
have been found. After expansion, the recommender re-
moves articles the user has edited and sorts the remaining
articles in descending score order. At first this score was
simply how often the article was found during expansion,
but pilot testing showed this led to recommending articles
with many links. These are poor recommendations because
they are usually on popular topics and have been edited by
many people. We implemented a penalty function similar
to the inter-document frequency term from the TF-IDF for-
mula [36]. However, TF-IDF gives the most credit to terms
that occur least often. This led to recommending obscure ar-
ticles with few links. We modified the function to prefer arti-
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cles with a moderate number of links, specified by the BestL
parameter in Algorithm 1. We asked several users to evalu-
ate lists of recommendations at different levels of BestL,
settling on 20 based on their reactions.

Algorithm 2 Co-edit recommender.
Param: MinJ {minimum user similarity: 0.0001}
Param: MinC {minimum similar editors per item: 3}
Param: N {number of requested recommendations: 2500}
Param: T {the set of items in target user t’s profile}

for all items i do
i.score ← 0, i.count ← 0

end for
{Find all my neighbors}
for all users u who have edited any item i ∈ T do

U ← all items edited by u
J ← |T∩U|

|T∪U| {Jaccard similarity with this neighbor}
{only recommend if similar enough}
if J > MinJ then

for all items i ∈ U do
i.score ← i.score + J {weighted credit}
i.count ← i.count + 1

end for
end if

end for
{Remove items edited by few others, or edited by t}
for all items i with i.score > 0 do

if i.count < MinC or i ∈ T then
i.score ← 0

end if
end for

Return: The first N items sorted by descending i.score

Co-editing patterns The co-edit recommender uses col-
laborative filtering to find people whose edit history is sim-
ilar to that of a target user. SuggestBot uses a variation of
the classic user-user algorithm from [35]. Instead of explicit
1-to-5 ratings of articles, the co-edit recommender treats edit-
ing an item as an implicit positive rating. This is sometimes
called a unary rating scale, and is often found in e-commerce
applications [15]. Common similarity metrics such as Pear-
son correlation and cosine similarity [37] are not well-suited
to unary data because they only consider items both users
have rated. With a unary scale, this rating will always be
identical, and all users who have at least one item in com-
mon will be perfectly similar. Algorithms often penalize sim-
ilarity based on few common ratings by significance weight-
ing [14]; for example, by multiplying the computed sim-
ilarity by n/50 if the two users have n < 50 ratings in
common. Instead of this ad-hoc penalty, we use the Jac-
card metric for set similarity between profiles, defined as
J(A, B) = |A ∩ B|/|A ∪ B|. This gives credit for having
items in common while penalizing large profiles with low
overlap.

The full algorithm for the co-edit recommender is shown in
Algorithm 2. We find all users who have rated something in
common with target user t and compute t’s similarity to each
of those users. Then, for each other user u, we give credit
to every item u has edited based on how similar u is to t.
At the end, we return the N items with the highest scores;
these are the items most likely to be edited by other people

who are similar to t. The algorithm ignores users who are
not very similar to t, and throws away items that are edited
by few other people. We chose low thresholds of 0.0001 and
3, respectively, because many users have edited few items
and their pool of potential neighbors is small. As with the
links recommender, the co-edit recommender tends to rec-
ommend popular and controversial items that many people
edit. Rather than search for an appropriate recommender-
specific penalty, we imposed a policy for all engines: do not
recommend any item in the top 1 percent of most-edited ar-
ticles.

Note that in all cases, we used straightforward variations of
our algorithms. The coedit recommender, for instance, might
take advantage of collaborative filtering extensions such as
incorporating taxonomies [42], combining multiple recom-
menders with hybrid algorithms [3, 28], and exploring trust
and reputation metrics between users [33]. Though these
extensions often improve performance, our hope was that
straightforward implementations would produce significant
results. Such implementations are quicker to code and test,
easier for other designers to adopt, and simpler to eventually
integrate with the MediaWiki software.

Making recommendations
Once the engines produce their lists of recommendations, the
article chooser combines and filters them. The chooser has
34 slots for articles to recommend per request: 19 stubs and
three each of the other five work types. These numbers make
for a clean interface that fills most of a web browser window,
as shown in Figure 1. For each slot, the chooser randomly
picks an engine, then asks it for its highest-ranked recom-
mendation that:

• needs the required type of work for the slot,
• is not in the top 1% of most frequently edited articles, and
• has not already been chosen for another slot.

If the engine cannot make a recommendation, the chooser
randomly tries another engine. If all engines fail, it chooses a
random article title that needs the required type of work. This
happens about one percent of the time, because to improve
performance the article chooser asks each engine for only
2,500 recommendations.

Deploying SuggestBot: results
As of September 2006, about 50 people per week request
articles to edit, even though we do not advertise. People dis-
cover SuggestBot by seeing suggestions on other users’ talk
pages, by seeing it in the recent changes list, and by back-
channel communication between users. The first sizeable
batch of users came from a post an early user made to a Wiki-
pedia mailing list. In March 2006, another user added a link
to SuggestBot on the Community Portal. In six months, over
1,200 people have received suggestions, and SuggestBot has
received dozens of positive comments.

But is intelligent task routing useful? Do users actually edit
suggested articles? Even if they do, does being intelligent
matter? Perhaps people are as likely to edit randomly chosen
articles as personalized ones, and it is the act of asking that
matters. If task routing is more useful than random, which
algorithms are most promising? Can we easily remove noise
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Recommender Edited Total Percent
Co-edit 29 726 4.0%

Text 34 790 4.3%
Links 25 742 3.4%

Random 8 836 1.0%
Total 96 3,094 3.1%

Table 2: Suggestions edited within two weeks of
posting. Personalizing recommendations improves
performance compared to random (χ2(2, 3094) =
16.77, p < 0.01).

Recommender Edited Total Percent
Co-edit 33 1,152 2.9%

Text 36 1,195 3.0%
Links 29 1,140 2.5%
Total 98 3,487 2.8%

Table 3: Suggestions edited within two weeks of
posting for the three intelligent algorithms. There
are no significant differences between the algorithms
(χ2(2, 3487) = 0.49, p = 0.78).

from profiles? To address these questions, we observed the
editing behavior of SuggestBot users in three experiments.

Our first experiment compared the intelligent algorithms to
random suggestions. We gave the random recommender the
same chance to be chosen as the other recommenders. Us-
ing random recommendations as a baseline may sound like
a straw man—but Wikipedia does randomly choose articles
to feature on the Community Portal. Every subject saw some
recommendations from each engine. Overall, 91 users re-
ceived a total of 3,094 suggestions. Table 2 shows how many
of each recommender’s suggestions were edited at least once
by the recipient within two weeks of the suggestions being
posted. The intelligent algorithms did about four times as
well as random. A chi-square test shows this difference is
significant.

The random recommender was so bad that we now use it only
as a backup if the intelligent algorithms all fail. Our second
experiment tried to detect differences between the intelligent
algorithms. Again, we used a within-subjects design and ob-
served how many suggestions are edited within two weeks.
A total of 103 subjects saw 3,487 non-random suggestions.
Table 3 shows the results. The links-based recommender ap-
pears to do slightly worse than the text and co-edit recom-
menders, but there were no significant differences.

Although the overall performance of the individual recom-
menders was similar, they failed under different conditions.
The text recommender often failed by focusing on one rel-
atively rare word in an article title and returning a series of
recommendations containing that word. The links recom-
mender was sometimes tricked by category templates that
contain links to the other pages in the category, as in Fig-
ure 5. Since every page in such categories points to every
other page in the category, these pages would appear many
times as the links recommender expanded the profile. The

 

Figure 5: Articles in categories where every page links
to every other page in the category sometimes con-
fused the links recommender, causing it to recommend
the other pages in the category.

Filtered? Edited Total Percent
Yes 91 2,448 3.7%
No 103 2,720 3.8%

Table 4: Suggestions edited within two weeks of post-
ing, with minor edits filtered from some profiles. There
were no significant differences between filtered and
unfiltered profiles (χ2(2, 5168) = 0.02, p < 1).

co-edit recommender had a tendency to recommend often-
edited articles. Since these failure modes are independent,
using meta-search techniques to combine their results might
improve SuggestBot’s performance.

Our third experiment dealt with trying to improve user pro-
files by removing noise, a general problem for implicitly con-
structed profiles. Wikipedians often make small changes to
articles, and can flag such edits as minor. Not everyone uses
the minor flag consistently, but many users asked if Suggest-
Bot could ignore minor edits. Their intuition was that elim-
inating minor edits from profiles would improve their rec-
ommendations. We tested this intuition by removing minor
edits for some users but not others. A total of 152 subjects
saw 5,168 suggestions. Table 4 shows that removing minor
edits had no effect on contributions.

A methodological note
As a general rule, we value deploying designs via field exper-
iments to explore whether they work in real contexts. How-
ever, researchers must be careful when comparing designs
deployed sequentially. For example, people edited fewer
suggestions in the second experiment than in the first. It is
tempting to conclude that the lower number of edits may be
due to the self-selection bias we feared; perhaps the most
interested and committed Wikipedia users signed up for the
first experiment. However, the percentage of edited sugges-
tions increased from the second experiment to the third. That
suggests that self-selection bias did not cause the drop in the
second experiment.

The problem is that context can change rapidly, making it
hard to know whether differences in behavior are caused by
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differences in the design. A number of conditions changed
between the second and third experiments. Wikipedia grew
by over 20% during that time. SuggestBot also changed,
using newer Wikipedia data and an improved algorithm for
filtering out revert edits. Conditions changed between the
first and second experiments as well—for example, someone
posted the link to SuggestBot on the community portal page
during this time period. Thus, we do not try to compare re-
sults between experiments or combine their results.

Instead, researchers using field experiments should deploy
multiple designs at once whenever possible. This is what we
did in each of our three experiments. In experiments 1 and
2, we used a within-subjects design, while in experiment 3
we used a between-subjects design. In all three cases, we
deployed the designs simultaneously. This maximized the
chance that our results were based on differences in the de-
signs rather than changes in the context.

Conclusion
Our results in both prior research with MovieLens and in the
present research with Wikipedia show that intelligent task
routing can dramatically increase members’ contributions.
The two systems are different in a number of ways, including
size, the nature of contributions, domain, and sociability. In
both cases, simple algorithms gave strong results, increasing
contributions by about four times. We saw these strong re-
sults in field experiments where we built real designs for real
communities with real users and real problems to solve. De-
ploying our designs in Wikipedia imposed some constraints
on what we could do, but provided compensating benefits in
the form of copious offline data to analyze and insight from
experienced members of the community. The designs them-
selves are rooted in established social science theories of mo-
tivation that are based on laboratory experiments.

Based on this foundation, we are confident that many other
communities stand to enjoy similar benefits from applying
intelligent task routing. For example: Slashdot assigns com-
ments randomly to meta-moderators. Why not choose com-
ments that are similar to one’s own posts? Or, why not ask
people to meta-moderate comments from stories they have
read? Likewise, many posts in discussion forums go unan-
swered. Research has shown that people are more likely to
return to post again if they receive a response [18]. Com-
munities that want to encourage people to return could route
unanswered posts to experienced members whose past con-
tributions are most similar to the unanswered question.

Intelligent task routing is likely to be most useful for com-
munities where tasks are numerous and heterogeneous. Like
information filtering, task routing will grow more valuable
as the number of tasks increases. It is also likely to be more
valuable as the diversity of tasks increases—although even
in MovieLens, where the only task is editing movie informa-
tion, simple algorithms produced large benefits.

Task routing is promising, but there is room for improve-
ment. The absolute numbers of articles edited in Wikipedia
are not as high as we would like. Tuning our algorithms,
bringing more sophisticated algorithms to bear, and using
ideas from meta-search to combine the recommenders’ out-

put are logical next steps. Learning to remove noise from
profiles is a general problem. Our lack of results with obvi-
ous strategies suggests it is an interesting problem. Solutions
could benefit both SuggestBot and recommender systems in
general. Finally, we might improve SuggestBot by develop-
ing interfaces that give users more control over their profiles
with minimal perceived cost, as McNee et al. did [29] for
new users of recommender systems.

Still, SuggestBot is a useful tool, and intelligent task routing
is a useful strategy for eliciting contributions from members
of online communities. Designers should use intelligent task
routing in order to build more valuable communities and bet-
ter experiences for the people who inhabit them.
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