
Architecture client-serveur

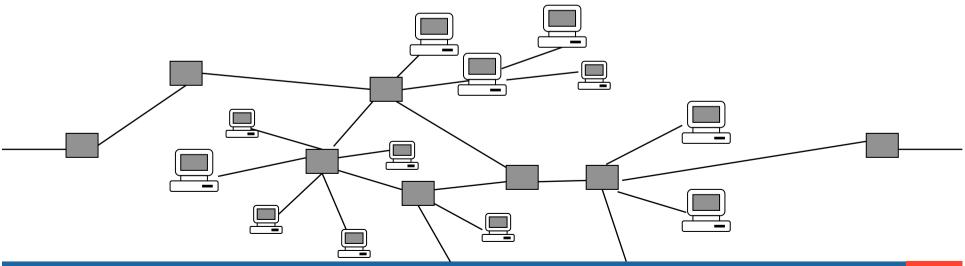
Yannick Prié UFR Informatique Université Claude Bernard Lyon 1

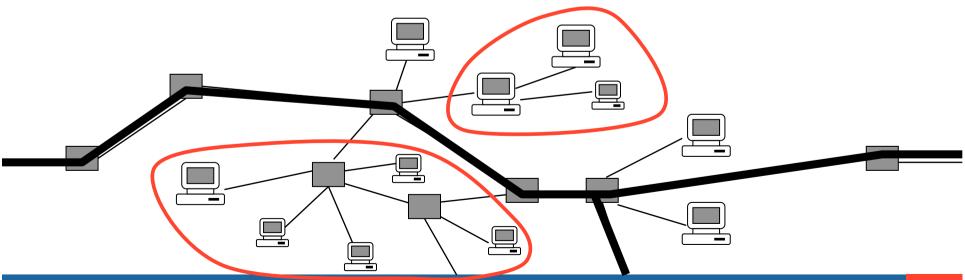
2008-2009 - Master SIB M1 - UE 3 / Bloc 4 - Cours 3

CM3: Architecture client/serveur

- Objectifs du cours
 - Rappels sur les ordinateurs réseau et Internet. Communication entre programmes et entre machines. Notion de protocole, couches ISO, protocoles de l'Internet. Architecture client / serveur. Considérations de sécurité. Exemples concrets de protocoles : HTTP et Z39.50

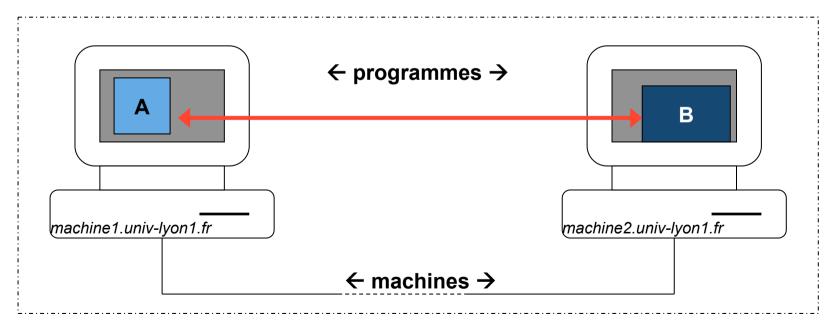
Réseau : pour quoi faire ?


- Echanger et partager des informations
 - transferts de fichiers/données
 - accès à des fichiers/données distants...
- Gérer et partager des ressources
 - imprimante partagée
 - puissance de calcul
 - stockage et sauvegarde...
- Communiquer
 - courrier électronique
 - chat, conférence
 - publication en ligne...


Réseau : c'est quoi ?

- Des machines et leurs programmes (= nœuds du réseau)
 - Ordinateurs réseau (carte réseau + système exploitation réseau)
 - Périphériques réseau (imprimante...)
 - Matériel réseau spécialisé
- Des connexions entre les machines (= branches du réseau)
 - par câble (fibre optique, ethernet, cuivre...)
 - par radio (ondes hertziennes, infrarouge...)

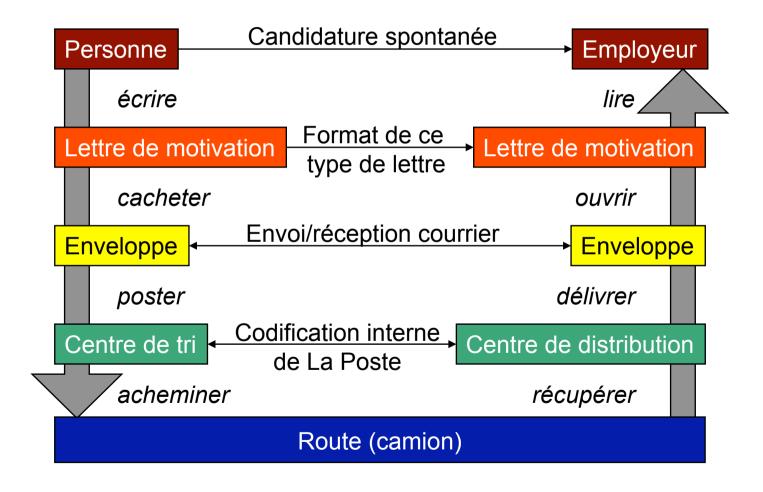
Réseau local / Internet


- Réseau local
 - centré autour d'une organisation (université, entreprise, famille)
 - géré par celle-ci
- Internet = réseau des réseaux mondial
 - ensemble de réseaux locaux
 - reliés par des « backbones » (épines dorsales)

Communiquer entre humains / programmes / machines

A tous les niveaux, des protocoles

- Ensemble de règles et de procédures à respecter pour pouvoir échanger des données sur un réseau
 - Remarque : exemple de la vie courante
 - Ca va ? (→) / Oui (←) / J'ai pas entendu (→) / Je répète : « Oui » (←)
- Exemples à différents niveaux
 - Niveau programmes (A B)
 - Tu fonctionnes ? (→) / Oui (←) /Envoie-moi le fichier toto.doc (→) / Ok c'est parti (←) / toto.doc (←) / Bien reçu (→) / Au revoir (←)
 - Niveaux système d'exploitation
 - Toi, système d'exploitation de la machine machine1.univ-lyon1.fr, passe le message « Tu fonctionnes ? » au programme qui écoute sur le port 3422 (→)
 - Niveau cartes
 - Toi carte réseau, regarde passer des paquets de données sur le câble, attrape ceux qui sont pour toi, et passe-en le contenu au système d'exploitation


Protocoles de communication

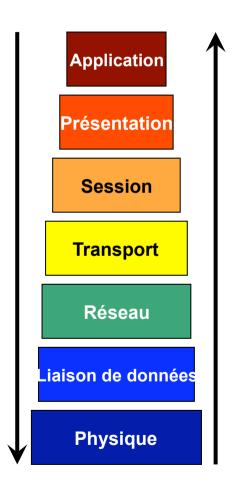
- But
 - compréhension entre machines / logiciels
 - communications indépendantes du système d'exploitation ou de la plate-forme
 - limitation des erreurs/risques durant la transmission
- Protocole pour l'échange de messages
 - un langage et un ensemble de règles
 - que deux systèmes doivent connaître (parler le même langage)
 - les fabricants doivent se conformer aux normes ISO (International Standardization Organization) pour les protocoles utilisés sur leurs machines/logiciels
- Modèle OSI (Open System Interconnection)
 - découpe le processus de transmission en 7 «couches»
 - chaque couche est responsable de l'un des aspects de la communication en réseau

Modèle en couches : exemple d'une lettre de candidature spontanée

Le modèle OSI les 7 couches

Application : gestion des échanges de données entre programmes et services du réseau

Présentation: mise en forme des informations pour les rendre lisibles par les applications


Session : détection du mode de communication à utiliser entre machines et périphériques / Surveillance des connexions

Transport : correction des erreurs de transmission; vérification de l'acheminement

Réseau : identification des machines connectées au réseau

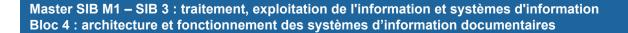
Liaison de données : subdivision des informations en «paquets» pour livraison sur le réseau

Physique : contrôle du support de transmission; circulation de l'information électrique

Protocoles de l'Internet

- Niveau OSI réseau
 - IP (Internet Protocol)
 - adressage (routage) des informations
 - identification des machines
- Niveau OSI transport / session
 - TCP (Transmission Control Protocol)
 - transfert d'information, contrôle des transmissions
- Niveau OSI application
 - FTP (File Transfer Protocol)
 - transfert de fichiers
 - HTTP (HyperText Transfer Protocol)
 - transfert d'informations sur le web
 - DNS (Domain Name Server protocol)
 - conversion du nom des ordinateurs connectés au réseau en adresses IP
 - etc.

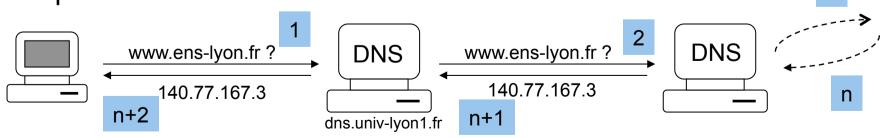
TCP/IP : base de l'Internet


Identification de machines sur Internet

- Une machine = un numéro
- Adresse IP universelle unique
 - 4 nombres de 8 bits (4 octets)
 - séparés par des points
 - ex: 134.214.128.17
- Classes d'adresses / organisations
 - Classe A: 112.x.y.z (ex. NASA)
 - Classe B: 134.214.x.y (ex. Université Lyon 1)
 - Classe C: 56.243.12.x (ex. Cyber-café)
- Remarques
 - IPV6
 - 16 octets
 - commence à se mettre en place
 - Une carte réseau = un numéro
 - adresse MAC, ex. 00:11:24:75:f4:6a

Noms de ressources sur Internet

- Idée : associer à l'adresse IP un nom de machine
 - ex. lisiperso15.univ-lyon1.fr # 134.214.88.239
- Nom de machine
 - décomposé hiérarchiquement
 - domaine (critère géographique, institutionnel, organisationnel...)
 - sous-domaine (éventuellement)
 - nom local de la machine
 - exemples
 - ligimpc13.univ-lyon1.fr
 - www.berkeley.edu
 - ftp.berkeley.edu
 - www.education.gouv.fr
- Attribution
 - ICANN: Internet Corporation for Assigned Names and Numbers
 - .gov, .edu, etc.
 - AFNIC : Association Française pour le Nommage Internet en Coopération
 - .fr, .gouv.fr, .asso



Traduction adresse IP / nom de machine

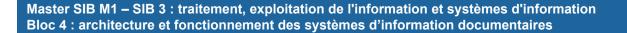
- Service de traduction fourni par des programmes appelés DNS (Domain Name Server)
- DNS est aussi le nom du protocole utilisé pour communiquer entre un programme qui désire une traduction, et un serveur
- Un DNS gère un domaine...

 | Isiperso15.univ-lyon1.fr ? DNS | DN

 ... et transmet la question à un autre DNS s'il ne sait pas répondre.

Client / serveur

Service


- comportement d'un programme qui peut rendre service à d'autres programmes
 - exemple : service de traduction noms/adresses IP = service DNS
- un service est appelé par une requête suivant un certain protocole
 - exemple : requête « donne-moi la traduction de lisiperso15.univlyon1.fr » envoyée suivant le protocole DNS

Client

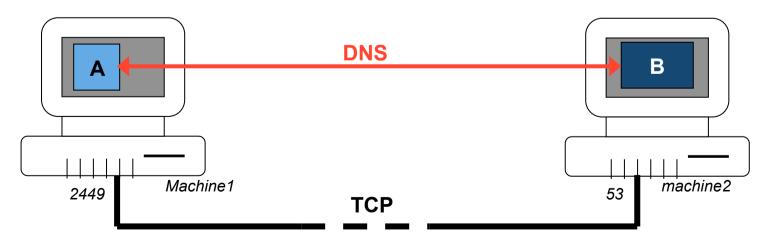
- programme demandant un service à un autre programme ET
- machine sur laquelle tourne ce programme client

Serveur

- programme fournissant des services à d'autres programme ET
- machine sur laquelle tourne ce programme serveur

Notion de socket

Port


- Entrée réseau de la machine
 - sur laquelle un serveur « écoute » en attendant des connexions / requêtes
 - à laquelle un client va se connecter

Socket

- « Tuyau » entre deux programmes
- Quintuplet: (machine1, port1, protocole transmission, port2, machine2)

Exemple

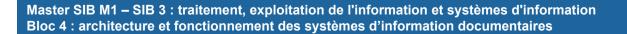
- Client sur machine 1 appelle serveur sur machine 2 / port 53, suivant le protocole TCP
- La connexion s'établit, le canal de communication est ouvert (port de sortie client : 2449)
- Il devient possible de communiquer suivant un protocole d'application (par exemple DNS)


Client / serveur : exemples (1/2)

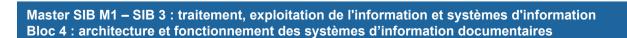
- Traduction noms de machines / adresses IP
 - protocole : DNS
 - clients : tout programme réseau utilisant des noms de machine,
 - serveurs : DNS (port = 53)
 - remarque : un DNS peut jouer le rôle de client pour un autre DNS
- Transfert de fichiers
 - protocole : FTP
 - clients : outils de gestion de transferts FTP (Ws_FTP, FileZilla, etc.)
 - serveurs : serveurs FTP (port = 21-22)
- Web
 - protocole : HTTP
 - clients: navigateurs web (Mozilla, IE, Firefox, Opera...)
 - serveurs : serveur web (IIS, Apache, ...) (port = 80)


Client / serveur : exemples (2/2)

- Machine connectée au réseau
 - protocole : ping
 - clients : ping
 - serveurs : serveurs ping
- Chat
 - Protocole : XMPP (Extensible Messaging and Presence Protocol)
 - client : logiciels de messagerie instantanée
 - Jabber, Google talk, GAIM, ichat...
 - Serveurs : serveurs XMPP
- Peer to peer
 - protocoles : envoi de fichier, échange d'informations, ...
 - client : client P2P
 - serveurs : client P2P, serveurs de métadonnées


Client / serveur : remarques

- Un programme serveur
 - tourne en permanence, attendant des requêtes
 - peut répondre à plusieurs clients en même temps
- Nécessité
 - machine robuste et rapide, qui fonctionne 24h/24
 - grande mémoire,
 - disques suffisants
 - sécurité des disques
 - etc.
 - présence d'administrateurs réseau pour gérer les serveurs


Architecture client / serveur

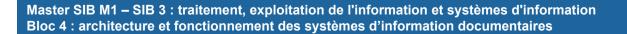
- Des échanges entre programmes sur réseau de machines suivant les principes client / serveur
 - des machines serveur peu nombreuses
 - des postes clients pour les différents utilisateurs
- Fiabilité et avantages (cf. « Comment ça marche ? »)
 - Ressources centralisées : les serveurs sont au centre du réseau, gèrent les ressources communes à tous les utilisateurs, et permettent d'éviter les problèmes de redondance et de contradiction
 - Meilleure sécurité : faible nombre de points d'entrée pour l'accès aux données
 - Administration centralisée au niveau des serveurs : les clients ne sont pas des ressources critiques
 - Réseau évolutif : ajouter/enlever des clients sans perturber le réseau
- Inconvénients
 - Coût élevé des machines serveurs, car fiabilité vitale

Sécurité des échanges réseau

- Protection des données qui circulent
 - Cryptage des données
- Protection des données sur les machines
 - Identification
- Protection des attaques
 - Firewall
 - Antivirus

Notion de session

- Session
 - Connexion maintenue entre un logiciel client et un serveur
 - Par exemple
 - identification sur un intranet,
 - navigation sans donner à nouveau mon login/mdp
 - le lien entre le client et le serveur est maintenu même quand il ne se passe rien
 - Une session est en général coupée si elle dure trop longtemps
- Remarque
 - Single-sign-on : gestion de plusieurs sessions sur des sites / serveurs différents


Echanges sur le web : HTTP

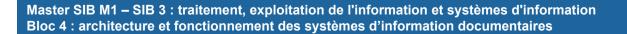
- HyperText Transfert Protocol
 - Défini par le W3C (World Wide Web consortium)
- La plupart des URL
- Envoi de documents web
 - d'un serveur web (serveur HTTP)
 - vers un client web (navigateur)
- Principe
 - Requête du client au serveur
 - demander une ressource web (page, image, service)
 - Réponse serveur au client
 - envoyer une ressource (page web, image, réponse)
- HTTP 1.0
- HTTP 1.1
 - gère les sessions (permet de garder une connexion)

HTTP: requêtes / réponses

- Référence
 - RFC 2616 (Request For Comments =/= standard de fait)
- Requête client
 - Contenu de la requête (type + URI + version protocole)
 - En-têtes
 - Ligne vide (indique fin de requête)
- Réponse serveur
 - Code réponse (version HTTP + code + chaine)
 - En-têtes
 - Ligne vide (indique fin en-tête)
 - Contenu de la réponse (souvent le document qu'on veut)

HTTP requêtes / réponses

- Requêtes
 - GET : demande de document ou de service
 - POST : demande de service avec envoi de paramètres
 - HEAD: demande d'information concernant un document
 - ...
- Réponses
 - Codées
 - 2xx : succès
 - 200 : ok
 - 3xx : redirection
 - 304 : document inchangé
 - 4xx : erreur client
 - 401 : non autorisé
 - 404 : inexistant
 - 5xx : erreur serveur
 - 500 : erreur dans l'exécution d'un service
 - 505 : version HTTP non supportée



En-têtes de requêtes

- From : adresse email
 - Non envoyée par la majorité des clients pour des raisons de confidentialité
- Accept : liste de types MIME
 - Exemples
 - audio/mid, image/jpeg
 - application/pdf
- Accept-Encoding : liste de méthodes de codage MIME
 - Exemples : compress, x-gzip, x-zip
- Accept-Langage : liste des langues acceptées
 - En réalité, n'est pratiquement jamais utilisé
- User-Agent : l'identification du logiciel client
 - Permet de répondre différemment suivant le client
 - Ne devrait pas être le cas (car il y a des normes qui devraient être respectées par tous les clients)
- Referer : page d'où l'on vient
 - Peut être utile pour faire des statistiques de parcours dans le site
- Autorization : login password
 - Niveau faible de sécurité (tout passe en clair)
- If-Modified-Since : date
 - Ne transmet la page que si elle a été modifiée depuis la date spécifiée
 - Utile pour les caches
- etc.

En-têtes de réponses

- Server : type du serveur
- Date : date du traitement de la requête
- Last-Modified : date
 - Utile pour le cache
- Content-Type : type MIME du document renvoyé
 - Doit faire partie en théorie de la liste des types acceptés dans la requête (Accept)
- Content-length : longueur des données (octets)
 - On peut savoir quand (et si) le transfert est fini
 - Permet au navigateurs d'indiquer des barres de progression
 - Non obligatoire
- Content-Encoding : encodage MIME
 - Doit faire partie en théorie des méthodes spécifiées dans la requête (Accept-Encoding)
- Content-Langage : langue
- etc.

Exemple

eguerin >telnet bat710.univ-lyon1.fr 80

Trying 134.214.88.10...

Connected to bat710.univ-lyon1.fr.

Escape character is '^]'.

HEAD / HTTP/1.1

Host: www710.univ-lyon1.fr

Connection: close HTTP/1.1 200 OK

Date: Mon, 09 Sep 2002 14:50:22 GMT Server: Apache/1.3.9 (Unix) Debian/GNU

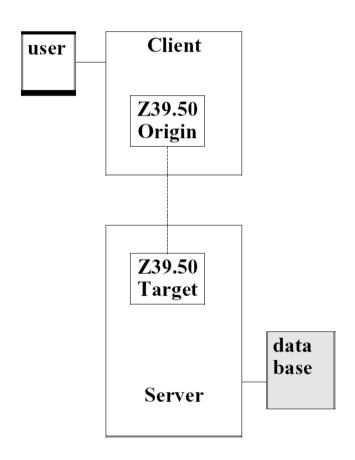
Last-Modified: Thu, 11 Jul 2002 09:36:01 GMT

ETag: "27ec6-1811-3d2d5181"

Accept-Ranges: bytes Content-Length: 6161

Connection: close

Content-Type: text/html; charset=iso-8859-1


Connection closed by foreign host.

eguerin >

Allons voir...

Interrogation de catalogues Z39.50 : principes

- Base de données
 bibliographiques hétérogènes
- Serveur Z39.50 = passerelle
 - traduction des requêtes Z39.50 dans le langage de la base
 - traduction des réponses de la base suivant le protocole Z39.50
- Dialogue client/serveur suivant Z39.50
- Le client Z39.50 envoie les requêtes et affiche les réponses

(ZIG: Z39.50 tutorial)

Remerciements

- Certaines diapositives proviennent de cours du Permis de Conduire Informatique (Université Lyon 1 – http://pci.univ-lyon1.fr).
- D'autres sont inspirées du cours « Web avancé », IUT A, UCBL (Eric Guérin)