
Visualization
Analysis & Design
Tamara Munzner

A K Peters Visualization Series

Illustrations by Eamonn MaguireVisualization/Human–Computer Interaction/Computer Graphics

“A must read for researchers, sophisticated
practitioners, and graduate students.”
—Jim Foley, College of Computing, Georgia Institute of Technology
Author of Computer Graphics: Principles and Practice

“Munzner’s new book is thorough and beautiful. It
belongs on the shelf of anyone touched and enriched by
visualization.”
—Chris Johnson, Scientific Computing and Imaging Institute,
University of Utah

“This is the visualization textbook I have long awaited.
It emphasizes abstraction, design principles, and the
importance of evaluation
and interactivity.”
—Jim Hollan, Department of Cognitive Science,
University of California, San Diego

“Munzner is one of the world’s very top researchers in
information visualization, and this meticulously crafted
volume is probably the most thoughtful and deep
synthesis the field has yet seen.”
—Michael McGuffin, Department of Software and IT Engineering,
École de Technologie Supérieure

“Munzner elegantly synthesizes an astounding amount of
cutting-edge work on visualization into a clear, engaging,
and comprehensive textbook that will prove indispensable
to students, designers, and researchers.”
—Steven Franconeri, Department of Psychology,
Northwestern University

“Munzner shares her deep insights in visualization with us
in this excellent textbook, equally useful for students and
experts in the field.”
—Jarke van Wijk, Department of Mathematics and Computer Science,
Eindhoven University of Technology

“The book shapes the field of visualization in an
unprecedented way.”
—Wolfgang Aigner, Institute for Creative Media Technologies,
St. Pölten University of Applied Sciences

“This book provides the most comprehensive coverage of
the fundamentals of visualization design that I have found.
It is a much-needed and long-awaited resource for both
teachers and practitioners of visualization.”
—Kwan-Liu Ma, Department of Computer Science,
University of California, Davis

This book’s unified approach encompasses information
visualization techniques for abstract data, scientific
visualization techniques for spatial data, and
visual analytics techniques for interweaving data
transformation and analysis with interactive visual
exploration. Suitable for both beginners and more
experienced designers, the book does not assume any
experience with programming, mathematics, human–
computer interaction, or graphic design.

K14708

WITH VITALSOURCE®

EBOOK

A N A K P E T E R S B O O K

• Access online or download to your smartphone, tablet
or PC/Mac

• Search the full text of this and other titles you own
• Make and share notes and highlights
• Copy and paste text and figures for use in your own

documents
• Customize your view by changing font size and layout

Visualization
Analysis & Design

A K PETERS VISUALIZATION SERIES
Series Editor: Tamara Munzner

Visualization Analysis and Design
Tamara Munzner

2014

Visualization
Analysis & Design

Tamara Munzner
Department of Computer Science

University of British Columbia

Illustrations by Eamonn Maguire

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A N A K P E T E R S B O O K

Cover art: Genesis 6-3-00, by Aribert Munzner. Casein on paperboard, 26” × 20”, 2000. http://www.aribertmunzner.com

For reuse of the diagram figures released under the CC-BY-4.0 license, written permission from the publishers is not required.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140909

International Standard Book Number-13: 978-1-4665-0893-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

i
i

i
i

i
i

i
i

Contents

Preface xv
Why a New Book? . xv
Existing Books . xvi
Audience . xvii
Who’s Who . xviii
Structure: What’s in This Book . xviii
What’s Not in This Book . xx
Acknowledgments . xx

1 What’s Vis, and Why Do It? 1
1.1 The Big Picture . 1
1.2 Why Have a Human in the Loop? . 2
1.3 Why Have a Computer in the Loop? . 4
1.4 Why Use an External Representation? . 6
1.5 Why Depend on Vision? . 6
1.6 Why Show the Data in Detail? . 7
1.7 Why Use Interactivity? . 9
1.8 Why Is the Vis Idiom Design Space Huge? . 10
1.9 Why Focus on Tasks? . 11
1.10 Why Focus on Effectiveness? . 11
1.11 Why Are Most Designs Ineffective? . 12
1.12 Why Is Validation Difficult? . 14
1.13 Why Are There Resource Limitations? . 14
1.14 Why Analyze? . 16
1.15 Further Reading . 18

2 What: Data Abstraction 20
2.1 The Big Picture . 21
2.2 Why Do Data Semantics and Types Matter? . 21
2.3 Data Types . 23
2.4 Dataset Types . 24

2.4.1 Tables . 25
2.4.2 Networks and Trees . 26

2.4.2.1 Trees . 27

v

vi Contents

2.4.3 Fields . 27
2.4.3.1 Spatial Fields . 28
2.4.3.2 Grid Types . 29

2.4.4 Geometry . 29
2.4.5 Other Combinations . 30
2.4.6 Dataset Availability . 31

2.5 Attribute Types . 31
2.5.1 Categorical . 32
2.5.2 Ordered: Ordinal and Quantitative . 32

2.5.2.1 Sequential versus Diverging 33
2.5.2.2 Cyclic . 33

2.5.3 Hierarchical Attributes . 33
2.6 Semantics . 34

2.6.1 Key versus Value Semantics . 34
2.6.1.1 Flat Tables . 34
2.6.1.2 Multidimensional Tables . 36
2.6.1.3 Fields . 37
2.6.1.4 Scalar Fields . 37
2.6.1.5 Vector Fields . 37
2.6.1.6 Tensor Fields . 38
2.6.1.7 Field Semantics . 38

2.6.2 Temporal Semantics . 38
2.6.2.1 Time-Varying Data . 39

2.7 Further Reading . 40

3 Why: Task Abstraction 42
3.1 The Big Picture . 43
3.2 Why Analyze Tasks Abstractly? . 43
3.3 Who: Designer or User . 44
3.4 Actions . 45

3.4.1 Analyze . 45
3.4.1.1 Discover . 47
3.4.1.2 Present . 47
3.4.1.3 Enjoy . 48

3.4.2 Produce . 49
3.4.2.1 Annotate . 49
3.4.2.2 Record . 49
3.4.2.3 Derive . 50

3.4.3 Search . 53
3.4.3.1 Lookup . 53
3.4.3.2 Locate . 53
3.4.3.3 Browse . 53
3.4.3.4 Explore . 54

Contents vii

3.4.4 Query . 54
3.4.4.1 Identify . 54
3.4.4.2 Compare . 55
3.4.4.3 Summarize . 55

3.5 Targets . 55
3.6 How: A Preview . 57
3.7 Analyzing and Deriving: Examples . 59

3.7.1 Comparing Two Idioms . 59
3.7.2 Deriving One Attribute . 60
3.7.3 Deriving Many New Attributes . 62

3.8 Further Reading . 64

4 Analysis: Four Levels for Validation 66
4.1 The Big Picture . 67
4.2 Why Validate? . 67
4.3 Four Levels of Design . 67

4.3.1 Domain Situation . 69
4.3.2 Task and Data Abstraction . 70
4.3.3 Visual Encoding and Interaction Idiom 71
4.3.4 Algorithm . 72

4.4 Angles of Attack . 73
4.5 Threats to Validity . 74
4.6 Validation Approaches . 75

4.6.1 Domain Validation . 77
4.6.2 Abstraction Validation . 78
4.6.3 Idiom Validation . 78
4.6.4 Algorithm Validation . 80
4.6.5 Mismatches . 81

4.7 Validation Examples . 81
4.7.1 Genealogical Graphs . 81
4.7.2 MatrixExplorer . 83
4.7.3 Flow Maps . 85
4.7.4 LiveRAC . 87
4.7.5 LinLog . 89
4.7.6 Sizing the Horizon . 90

4.8 Further Reading . 91

5 Marks and Channels 94
5.1 The Big Picture . 95
5.2 Why Marks and Channels? . 95
5.3 Defining Marks and Channels . 95

5.3.1 Channel Types . 99
5.3.2 Mark Types . 99

viii Contents

5.4 Using Marks and Channels . 99
5.4.1 Expressiveness and Effectiveness . 100
5.4.2 Channel Rankings . 101

5.5 Channel Effectiveness . 103
5.5.1 Accuracy . 103
5.5.2 Discriminability . 106
5.5.3 Separability . 106
5.5.4 Popout . 109
5.5.5 Grouping . 111

5.6 Relative versus Absolute Judgements . 112
5.7 Further Reading . 114

6 Rules of Thumb 116
6.1 The Big Picture . 117
6.2 Why and When to Follow Rules of Thumb? . 117
6.3 No Unjustified 3D . 117

6.3.1 The Power of the Plane . 118
6.3.2 The Disparity of Depth . 118
6.3.3 Occlusion Hides Information . 120
6.3.4 Perspective Distortion Dangers . 121
6.3.5 Other Depth Cues . 123
6.3.6 Tilted Text Isn’t Legibile . 124
6.3.7 Benefits of 3D: Shape Perception . 124
6.3.8 Justification and Alternatives . 125

Example: Cluster–Calendar Time-Series Vis 125
Example: Layer-Oriented Time-Series Vis 128

6.3.9 Empirical Evidence . 129
6.4 No Unjustified 2D . 131
6.5 Eyes Beat Memory . 131

6.5.1 Memory and Attention . 132
6.5.2 Animation versus Side-by-Side Views . 132
6.5.3 Change Blindness . 133

6.6 Resolution over Immersion . 134
6.7 Overview First, Zoom and Filter, Details on Demand 135
6.8 Responsiveness Is Required . 137

6.8.1 Visual Feedback . 138
6.8.2 Latency and Interaction Design . 138
6.8.3 Interactivity Costs . 140

6.9 Get It Right in Black and White . 140
6.10 Function First, Form Next . 140
6.11 Further Reading . 141

Contents ix

7 Arrange Tables 144
7.1 The Big Picture . 145
7.2 Why Arrange? . 145
7.3 Arrange by Keys and Values . 145
7.4 Express: Quantitative Values . 146

Example: Scatterplots . 146
7.5 Separate, Order, and Align: Categorical Regions 149

7.5.1 List Alignment: One Key . 149
Example: Bar Charts . 150
Example: Stacked Bar Charts . 151
Example: Streamgraphs . 153
Example: Dot and Line Charts . 155

7.5.2 Matrix Alignment: Two Keys . 157
Example: Cluster Heatmaps . 158
Example: Scatterplot Matrix . 160

7.5.3 Volumetric Grid: Three Keys . 161
7.5.4 Recursive Subdivision: Multiple Keys . 161

7.6 Spatial Axis Orientation . 162
7.6.1 Rectilinear Layouts . 162
7.6.2 Parallel Layouts . 162

Example: Parallel Coordinates . 162
7.6.3 Radial Layouts . 166

Example: Radial Bar Charts . 167
Example: Pie Charts . 168

7.7 Spatial Layout Density . 171
7.7.1 Dense . 172

Example: Dense Software Overviews . 172
7.7.2 Space-Filling . 174

7.8 Further Reading . 175

8 Arrange Spatial Data 178
8.1 The Big Picture . 179
8.2 Why Use Given? . 179
8.3 Geometry . 180

8.3.1 Geographic Data . 180
Example: Choropleth Maps . 181

8.3.2 Other Derived Geometry . 182
8.4 Scalar Fields: One Value . 182

8.4.1 Isocontours . 183
Example: Topographic Terrain Maps . 183
Example: Flexible Isosurfaces . 185

8.4.2 Direct Volume Rendering . 186
Example: Multidimensional Transfer Functions 187

x Contents

8.5 Vector Fields: Multiple Values . 189
8.5.1 Flow Glyphs . 191
8.5.2 Geometric Flow . 191

Example: Similarity-Clustered Streamlines 192
8.5.3 Texture Flow . 193
8.5.4 Feature Flow . 193

8.6 Tensor Fields: Many Values . 194
Example: Ellipsoid Tensor Glyphs . 194

8.7 Further Reading . 197

9 Arrange Networks and Trees 200
9.1 The Big Picture . 201
9.2 Connection: Link Marks . 201

Example: Force-Directed Placement . 204
Example: sfdp . 207

9.3 Matrix Views . 208
Example: Adjacency Matrix View . 208

9.4 Costs and Benefits: Connection versus Matrix 209
9.5 Containment: Hierarchy Marks . 213

Example: Treemaps . 213
Example: GrouseFlocks . 215

9.6 Further Reading . 216

10 Map Color and Other Channels 218
10.1 The Big Picture . 219
10.2 Color Theory . 219

10.2.1 Color Vision . 219
10.2.2 Color Spaces . 220
10.2.3 Luminance, Saturation, and Hue . 223
10.2.4 Transparency . 225

10.3 Colormaps . 225
10.3.1 Categorical Colormaps . 226
10.3.2 Ordered Colormaps . 229
10.3.3 Bivariate Colormaps . 234
10.3.4 Colorblind-Safe Colormap Design . 235

10.4 Other Channels . 236
10.4.1 Size Channels . 236
10.4.2 Angle Channel . 237
10.4.3 Curvature Channel . 238
10.4.4 Shape Channel . 238
10.4.5 Motion Channels . 238
10.4.6 Texture and Stippling . 239

10.5 Further Reading . 240

Contents xi

11 Manipulate View 242
11.1 The Big Picture . 243
11.2 Why Change? . 244
11.3 Change View over Time . 244

Example: LineUp . 246
Example: Animated Transitions . 248

11.4 Select Elements . 249
11.4.1 Selection Design Choices . 250
11.4.2 Highlighting . 251

Example: Context-Preserving Visual Links 253
11.4.3 Selection Outcomes . 254

11.5 Navigate: Changing Viewpoint . 254
11.5.1 Geometric Zooming . 255
11.5.2 Semantic Zooming . 255
11.5.3 Constrained Navigation . 256

11.6 Navigate: Reducing Attributes . 258
11.6.1 Slice . 258

Example: HyperSlice . 259
11.6.2 Cut . 260
11.6.3 Project . 261

11.7 Further Reading . 261

12 Facet into Multiple Views 264
12.1 The Big Picture . 265
12.2 Why Facet? . 265
12.3 Juxtapose and Coordinate Views . 267

12.3.1 Share Encoding: Same/Different . 267
Example: Exploratory Data Visualizer (EDV) 268

12.3.2 Share Data: All, Subset, None . 269
Example: Bird’s-Eye Maps . 270
Example: Multiform Overview–Detail Microarrays 271
Example: Cerebral . 274

12.3.3 Share Navigation: Synchronize . 276
12.3.4 Combinations . 276

Example: Improvise . 277
12.3.5 Juxtapose Views . 278

12.4 Partition into Views . 279
12.4.1 Regions, Glyphs, and Views . 279
12.4.2 List Alignments . 281
12.4.3 Matrix Alignments . 282

Example: Trellis . 282
12.4.4 Recursive Subdivision . 285

12.5 Superimpose Layers . 288

xii Contents

12.5.1 Visually Distinguishable Layers . 289
12.5.2 Static Layers . 289

Example: Cartographic Layering . 289
Example: Superimposed Line Charts . 290
Example: Hierarchical Edge Bundles . 292

12.5.3 Dynamic Layers . 294
12.6 Further Reading . 295

13 Reduce Items and Attributes 298
13.1 The Big Picture . 299
13.2 Why Reduce? . 299
13.3 Filter . 300

13.3.1 Item Filtering . 301
Example: FilmFinder . 301

13.3.2 Attribute Filtering . 303
Example: DOSFA . 304

13.4 Aggregate . 305
13.4.1 Item Aggregation . 305

Example: Histograms . 306
Example: Continuous Scatterplots . 307
Example: Boxplot Charts . 308
Example: SolarPlot . 310
Example: Hierarchical Parallel Coordinates 311

13.4.2 Spatial Aggregation . 313
Example: Geographically Weighted Boxplots 313

13.4.3 Attribute Aggregation: Dimensionality Reduction 315
13.4.3.1 Why and When to Use DR? . 316
Example: Dimensionality Reduction for Document Collections 316
13.4.3.2 How to Show DR Data? . 319

13.5 Further Reading . 320

14 Embed: Focus+Context 322
14.1 The Big Picture . 323
14.2 Why Embed? . 323
14.3 Elide . 324

Example: DOITrees Revisited . 325
14.4 Superimpose . 326

Example: Toolglass and Magic Lenses 326
14.5 Distort . 327

Example: 3D Perspective . 327
Example: Fisheye Lens . 328
Example: Hyperbolic Geometry . 329

Contents xiii

Example: Stretch and Squish Navigation 331
Example: Nonlinear Magnification Fields 333

14.6 Costs and Benefits: Distortion . 334
14.7 Further Reading . 337

15 Analysis Case Studies 340
15.1 The Big Picture . 341
15.2 Why Analyze Case Studies? . 341
15.3 Graph-Theoretic Scagnostics . 342
15.4 VisDB . 347
15.5 Hierarchical Clustering Explorer . 351
15.6 PivotGraph . 355
15.7 InterRing . 358
15.8 Constellation . 360
15.9 Further Reading . 366

Figure Credits 369

Bibliography 375

Idiom and System Examples Index 397

Concept Index 399

This page intentionally left blankThis page intentionally left blank

Preface

Why a New Book?
I wrote this book to scratch my own itch: the book I wanted to
teach out of for my graduate visualization (vis) course did not exist.
The itch grew through the years of teaching my own course at the
University of British Columbia eight times, co-teaching a course
at Stanford in 2001, and helping with the design of an early vis
course at Stanford in 1996 as a teaching assistant.

I was dissatisfied with teaching primarily from original research
papers. While it is very useful for graduate students to learn to
read papers, what was missing was a synthesis view and a frame-
work to guide thinking. The principles and design choices that I
intended a particular paper to illustrate were often only indirectly
alluded to in the paper itself. Even after assigning many papers
or book chapters as preparatory reading before each lecture, I was
frustrated by the many major gaps in the ideas discussed. More-
over, the reading load was so heavy that it was impossible to fit in
any design exercises along the way, so the students only gained
direct experience as designers in a single monolithic final project.

I was also dissatisfied with the lecture structure of my own
course because of a problem shared by nearly every other course in
the field: an incoherent approach to crosscutting the subject mat-
ter. Courses that lurch from one set of crosscuts to another are
intellectually unsatisfying in that they make vis seem like a grab-
bag of assorted topics rather than a field with a unifying theoretical
framework. There are several major ways to crosscut vis mate-
rial. One is by the field from which we draw techniques: cognitive
science for perception and color, human–computer interaction for
user studies and user-centered design, computer graphics for ren-
dering, and so on. Another is by the problem domain addressed:
for example, biology, software engineering, computer networking,
medicine, casual use, and so on. Yet another is by the families
of techniques: focus+context, overview/detail, volume rendering,

xv

xvi Preface

and statistical graphics. Finally, evaluation is an important and
central topic that should be interwoven throughout, but it did not
fit into the standard pipelines and models. It was typically rele-
gated to a single lecture, usually near the end, so that it felt like
an afterthought.

Existing Books
Vis is a young field, and there are not many books that provide a
synthesis view of the field. I saw a need for a next step on this
front.

Tufte is a curator of glorious examples [Tufte 83,Tufte 91,
Tufte 97], but he focuses on what can be done on the static printed
page for purposes of exposition. The hallmarks of the last 20 years
of computer-based vis are interactivity rather than simply static
presentation and the use of vis for exploration of the unknown in
addition to exposition of the known. Tufte’s books do not address
these topics, so while I use them as supplementary material, I find
they cannot serve as the backbone for my own vis course. However,
any or all of them would work well as supplementary reading for a
course structured around this book; my own favorite for this role
is Envisioning Information [Tufte 91].

Some instructors use Readings in Information Visualization [Card
et al. 99]. The first chapter provides a useful synthesis view of the
field, but it is only one chapter. The rest of the book is a collection
of seminal papers, and thus it shares the same problem as directly
reading original papers. Here I provide a book-length synthesis,
and one that is informed by the wealth of progress in our field in
the past 15 years.

Ware’s book Information Visualization: Perception for Design
[Ware 13] is a thorough book on vis design as seen through the
lens of perception, and I have used it as the backbone for my own
course for many years. While it discusses many issues on how one
could design a vis, it does not cover what has been done in this
field for the past 14 years from a synthesis point of view. I wanted
a book that allows a beginning student to learn from this collective
experience rather than starting from scratch. This book does not
attempt to teach the very useful topic of perception per se; it covers
only the aspects directly needed to get started with vis and leaves
the rest as further reading. Ware’s shorter book, Visual Thinking
for Design [Ware 08], would be excellent supplemental reading for
a course structured around this book.

Preface xvii

This book offers a considerably more extensive model and
framework than Spence’s Information Visualization [Spence 07].
Wilkinson’s The Grammar of Graphics [Wilkinson 05] is a deep and
thoughtful work, but it is dense enough that it is more suitable for
vis insiders than for beginners. Conversely, Few’s Show Me The
Numbers [Few 12] is extremely approachable and has been used at
the undergraduate level, but the scope is much more limited than
the coverage of this book.

The recent book Interactive Data Visualization [Ward et al. 10]
works from the bottom up with algorithms as the base, whereas I
work from the top down and stop one level above algorithmic con-
siderations; our approaches are complementary. Like this book, it
covers both nonspatial and spatial data. Similarly, the Data Visu-
alization [Telea 07] book focuses on the algorithm level. The book
on The Visualization Toolkit [Schroeder et al. 06] has a scope far be-
yond the vtk software, with considerable synthesis coverage of the
concerns of visualizing spatial data. It has been used in many sci-
entific visualization courses, but it does not cover nonspatial data.
The voluminous Visualization Handbook [Hansen and Johnson 05]
is an edited collection that contains a mix of synthesis material
and research specifics; I refer to some specific chapters as good re-
sources in my Further Reading sections at the end of each chapter
in this book.

Audience
The primary audience of this book is students in a first vis course,
particularly at the graduate level but also at the advanced under-
graduate level. While admittedly written from a computer scien-
tist’s point of view, the book aims to be accessible to a broad audi-
ence including students in geography, library science, and design.
It does not assume any experience with programming, mathemat-
ics, human–computer interaction, cartography, or graphic design;
for those who do have such a background, some of the terms that
I define in this book are connected with the specialized vocabu-
lary from these areas through notes in the margins. Other au-
diences are people from other fields with an interest in vis, who
would like to understand the principles and design choices of this
field, and practitioners in the field who might use it as a reference
for a more formal analysis and improvements of production vis
applications.

I wrote this book for people with an interest in the design and
analysis of vis idioms and systems. That is, this book is aimed

xviii Preface

at vis designers, both nascent and experienced. This book is not
directly aimed at vis end users, although they may well find some
of this material informative.

The book is aimed at both those who take a problem-driven
approach and those who take a technique-driven approach. Its
focus is on broad synthesis of the general underpinnings of vis in
terms of principles and design choices to provide a framework for
the design and analysis of techniques, rather than the algorithms
to instantiate those techniques.

The book features a unified approach encompassing informa-
tion visualization techniques for abstract data, scientific visualiza-
tion techniques for spatial data, and visual analytics techniques
for interleaving data transformation and analysis with interactive
visual exploration.

Who’s Who
I use pronouns in a deliberate way in this book, to indicate roles.
I am the author of this book. I cover many ideas that have a long
and rich history in the field, but I also advocate opinions that are
not necessarily shared by all visualization researchers and practi-
tioners. The pronoun you means the reader of this book; I address
you as if you’re designing or analyzing a visualization system. The
pronoun they refers to the intended users, the target audience for
whom a visualization system is designed. The pronoun we refers
to all humans, especially in terms of our shared perceptual and
cognitive responses.

I’ll also use the abbreviation vis throughout this book, since
visualization is quite a mouthful!

Structure: What’s in This Book
The book begins with a definition of vis and walks through its many
implications in Chapter 1, which ends with a high-level introduc-
tion to an analysis framework of breaking down vis design accord-
ing what–why–how questions that have data–task–idiom answers.
Chapter 2 addresses the what question with answers about data
abstractions, and Chapter 3 addresses the why question with task
abstractions, including an extensive discussion of deriving new
data, a preview of the framework of design choices for how id-
ioms can be designed, and several examples of analysis through
this framework.

Preface xix

Chapter 4 extends the analysis framework to two additional lev-
els: the domain situation level on top and the algorithm level on
the bottom, with the what/why level of data and task abstraction
and the how level of visual encoding and interaction idiom design
in between the two. This chapter encourages using methods to val-
idate your design in a way that matches up with these four levels.

Chapter 5 covers the principles of marks and channels for en-
coding information. Chapter 6 presents eight rules of thumb for
design.

The core of the book is the framework for analyzing how vis
idioms can be constructed out of design choices. Three chapters
cover choices of how to visually encode data by arranging space:
Chapter 7 for tables, Chapter 8 for spatial data, and Chapter 9
for networks. Chapter 10 continues with the choices for mapping
color and other channels in visual encoding. Chapter 11 discusses
ways to manipulate and change a view. Chapter 12 covers ways to
facet data between multiple views. Choices for how to reduce the
amount of data shown in each view are covered in Chapter 13, and
Chapter 14 covers embedding information about a focus set within
the context of overview data. Chapter 15 wraps up the book with
six case studies that are analyzed in detail with the full framework.

Each design choice is illustrated with concrete examples of spe-
cific idioms that use it. Each example is analyzed by decompos-
ing its design with respect to the design choices that have been
presented so far, so these analyses become more extensive as the
chapters progress; each ends with a table summarizing the analy-
sis. The book’s intent is to get you familiar with analyzing existing
idioms as a springboard for designing new ones.

I chose the particular set of concrete examples in this book as
evocative illustrations of the space of vis idioms and my way to
approach vis analysis. Although this set of examples does cover
many of the more popular idioms, it is certainly not intended to
be a complete enumeration of all useful idioms; there are many
more that have been proposed that aren’t in here. These examples
also aren’t intended to be a historical record of who first proposed
which ideas: I often pick more recent examples rather than the
very first use of a particular idiom.

All of the chapters start with a short section called The Big Pic-
ture that summarizes their contents, to help you quickly deter-
mine whether a chapter covers material that you care about. They
all end with a Further Reading section that points you to more in-
formation about their topics. Throughout the book are boxes in
the margins: vocabulary notes in purple starting with a star, and

xx Preface

cross-reference notes in blue starting with a triangle. Terms are
highlighted in purple where they are defined for the first time.

The book has an accompanying web page at http://www.cs.ubc.
ca/∼tmm/vadbook with errata, pointers to courses that use the
book in different ways, example lecture slides covering the mate-
rial, and downloadable versions of the diagram figures.

What’s Not in This Book

This book focuses on the abstraction and idiom levels of design and
doesn’t cover the domain situation level or the algorithm levels.

I have left out algorithms for reasons of space and time, not of
interest. The book would need to be much longer if it covered algo-
rithms at any reasonable depth; the middle two levels provide more
than enough material for a single volume of readable size. Also,
many good resources already exist to learn about algorithms, in-
cluding original papers and some of the previous books discussed
above. Some points of entry for this level are covered in Further
Reading sections at the end of each chapter. Moreover, this book
is intended to be accessible to people without a computer science
background, a decision that precludes algorithmic detail. A final
consideration is that the state of the art in algorithms changes
quickly; this book aims to provide a framework for thinking about
design that will age more gracefully. The book includes many con-
crete examples of previous vis tools to illustrate points in the design
space of possible idioms, not as the final answer for the very latest
and greatest way to solve a particular design problem.

The domain situation level is not as well studied in the vis lit-
erature as the algorithm level, but there are many relevant re-
sources from other literatures including human–computer interac-
tion. Some points of entry for this level are also covered in Further
Reading.

Acknowledgments

My thoughts on visualization in general have been influenced by
many people, but especially Pat Hanrahan and the students in
the vis group while I was at Stanford: Robert Bosch, Chris Stolte,
Diane Tang, and especially François Guimbretiére.

This book has benefited from the comments and thoughts of
many readers at different stages.

Preface xxi

I thank the recent members of my research group for their
incisive comments on chapter drafts and their patience with my
sometimes-obsessive focus on this book over the past six years:
Matt Brehmer, Jessica Dawson, Joel Ferstay, Stephen Ingram,
Miriah Meyer, and especially Michael Sedlmair. I also thank the
previous members of my group for their collaboration and discus-
sions that have helped shape my thinking: Daniel Archambault,
Aaron Barsky, Adam Bodnar, Kristian Hildebrand, Qiang Kong,
Heidi Lam, Peter McLachlan, Dmitry Nekrasovski, James Slack,
Melanie Tory, and Matt Williams.

I thank several people who gave me useful feedback on my Visu-
alization book chapter [Munzner 09b] in the Fundamentals of Com-
puter Graphics textbook [Shirley and Marschner 09]: TJ Jankun-
Kelly, Robert Kincaid, Hanspeter Pfister, Chris North, Stephen
North, John Stasko, Frank van Ham, Jarke van Wijk, and Mar-
tin Wattenberg. I used that chapter as a test run of my initial
structure for this book, so their feedback has carried forward into
this book as well.

I also thank early readers Jan Hardenburgh, Jon Steinhart, and
Maureen Stone. Later reader Michael McGuffin contributed many
thoughtful comments in addition to several great illustrations.

Many thanks to the instructors who have test-taught out of
draft versions of this book, including Enrico Bertini, Remco Chang,
Heike Jänicke Leitte, Raghu Machiragu, and Melanie Tory. I espe-
cially thank Michael Laszlo, Chris North, Hanspeter Pfister, Miriah
Meyer, and Torsten Möller for detailed and thoughtful feed-
back.

I also thank all of the students who have used draft versions
of this book in a course. Some of these courses were structured
to provide me with a great deal of commentary from the students
on the drafts, and I particularly thank these students for their
contributions.

From my own 2011 course: Anna Flagg, Niels Hanson, Jingxian
Li, Louise Oram, Shama Rashid, Junhao (Ellsworth) Shi, Jillian
Slind, Mashid ZeinalyBaraghoush, Anton Zoubarev, and Chuan
Zhu.

From North’s 2011 course: Ankit Ahuja, S.M. (Arif) Arifuzza-
man, Sharon Lynn Chu, Andre Esakia, Anurodh Joshi, Chiran-
jeeb Kataki, Jacob Moore, Ann Paul, Xiaohui Shu, Ankit Singh,
Hamilton Turner, Ji Wang, Sharon Chu Yew Yee, Jessica Zeitz,
and especially Lauren Bradel.

From Pfister’s 2012 course: Pankaj Ahire, Rabeea Ahmed, Salen
Almansoori, Ayindri Banerjee, Varun Bansal, Antony Bett, Made-

xxii Preface

laine Boyd, Katryna Cadle, Caitline Carey, Cecelia Wenting Cao,
Zamyla Chan, Gillian Chang, Tommy Chen, Michael Cherkassky,
Kevin Chin, Patrick Coats, Christopher Coey, John Connolly, Dan-
iel Crookston Charles Deck, Luis Duarte, Michael Edenfield, Jef-
frey Ericson, Eileen Evans, Daniel Feusse, Gabriela Fitz, Dave
Fobert, James Garfield, Shana Golden, Anna Gommerstadt, Bo
Han, William Herbert, Robert Hero, Louise Hindal, Kenneth Ho,
Ran Hou, Sowmyan Jegatheesan, Todd Kawakita, Rick Lee, Na-
talya Levitan, Angela Li, Eric Liao, Oscar Liu, Milady Jiminez Lopez,
Valeria Espinosa Mateos, Alex Mazure, Ben Metcalf, Sarah Ngo, Pat
Njolstad, Dimitris Papnikolaou, Roshni Patel, Sachin Patel, Yogesh
Rana, Anuv Ratan, Pamela Reid, Phoebe Robinson, Joseph Rose,
Kishleen Saini, Ed Santora, Konlin Shen, Austin Silva, Samuel
Q. Singer, Syed Sobhan, Jonathan Sogg, Paul Stravropoulos, Lila
Bjorg Strominger, Young Sul, Will Sun, Michael Daniel Tam, Man
Yee Tang, Mark Theilmann, Gabriel Trevino, Blake Thomas Walsh,
Patrick Walsh, Nancy Wei, Karisma Williams, Chelsea Yah, Amy
Yin, and Chi Zeng.

From Möller’s 2014 course: Tamás Birkner, Nikola Dichev, Eike
Jens Gnadt, Michael Gruber, Martina Kapf, Manfred Klaffenböck,
Sümeyye Kocaman, Lea Maria Joseffa Koinig, Jasmin Kuric,
Mladen Magic, Dana Markovic, Christine Mayer, Anita Moser, Mag-
dalena Pöhl, Michael Prater, Johannes Preisinger, Stefan Rammer,
Philipp Sturmlechner, Himzo Tahic, Michael Tögel, and Kyriakoula
Tsafou.

I thank all of the people connected with A K Peters who con-
tributed to this book. Alice Peters and Klaus Peters steadfastedly
kept asking me if I was ready to write a book yet for well over a
decade and helped me get it off the ground. Sarah Chow, Char-
lotte Byrnes, Randi Cohen, and Sunil Nair helped me get it out the
door with patience and care.

I am delighted with and thankful for the graphic design talents
of Eamonn Maguire of Antarctic Design, an accomplished vis re-
searcher in his own right, who tirelessly worked with me to turn
my hand-drawn Sharpie drafts into polished and expressive dia-
grams.

I am grateful for the friends who saw me through the days,
through the nights, and through the years: Jen Archer, Kirsten
Cameron, Jenny Gregg, Bridget Hardy, Jane Henderson, Yuri Hoff-
man, Eric Hughes, Kevin Leyton-Brown, Max Read, Shevek, Anila
Srivastava, Aimée Sturley, Jude Walker, Dave Whalen, and Betsy
Zeller.

I thank my family for their decades of love and support: Naomi
Munzner, Sheila Oehrlein, Joan Munzner, and Ari Munzner. I also

Preface xxiii

thank Ari for the painting featured on the cover and for the way
that his artwork has shaped me over my lifetime; see http://www.
aribertmunzner.com.

This page intentionally left blankThis page intentionally left blank

What’s Vis, and Why Do It?

Chapter 1

1.1 The Big Picture

This book is built around the following definition of visualization—
vis, for short:

Computer-based visualization systems provide visual
representations of datasets designed to help people carry
out tasks more effectively.

Visualization is suitable when there is a need to augment
human capabilities rather than replace people with com-
putational decision-making methods. The design space
of possible vis idioms is huge, and includes the consid-
erations of both how to create and how to interact with
visual representations. Vis design is full of trade-offs, and
most possibilities in the design space are ineffective for a
particular task, so validating the effectiveness of a design
is both necessary and difficult. Vis designers must take
into account three very different kinds of resource limi-
tations: those of computers, of humans, and of displays.
Vis usage can be analyzed in terms of why the user needs
it, what data is shown, and how the idiom is designed.

I’ll discuss the rationale behind many aspects of this definition as
a way of getting you to think about the scope of this book, and
about visualization itself:

• Why have a human in the decision-making loop?

• Why have a computer in the loop?

• Why use an external representation?

• Why depend on vision?

1

2 1. What’s Vis, and Why Do It?

• Why show the data in detail?

• Why use interactivity?

• Why is the vis idiom design space huge?

• Why focus on tasks?

• Why are most designs ineffective?

• Why care about effectiveness?

• Why is validation difficult?

• Why are there resource limitations?

• Why analyze vis?

1.2 Why Have a Human in the Loop?
Vis allows people to analyze data when they don’t know exactly
what questions they need to ask in advance.

The modern era is characterized by the promise of better deci-
sion making through access to more data than ever before. When
people have well-defined questions to ask about data, they can use
purely computational techniques from fields such as statistics and
machine learning.⋆ Some jobs that were once done by humans can⋆ The field of machine

learning is a branch of
artificial intelligence where
computers can handle a
wide variety of new situa-
tions in response to data-
driven training, rather than
by being programmed with
explicit instructions in ad-
vance.

now be completely automated with a computer-based solution. If
a fully automatic solution has been deemed to be acceptable, then
there is no need for human judgement, and thus no need for you to
design a vis tool. For example, consider the domain of stock mar-
ket trading. Currently, there are many deployed systems for high-
frequency trading that make decisions about buying and selling
stocks when certain market conditions hold, when a specific price
is reached, for example, with no need at all for a time-consuming
check from a human in the loop. You would not want to design
a vis tool to help a person make that check faster, because even
an augmented human will not be able to reason about millions of
stocks every second.

However, many analysis problems are ill specified: people don’t
know how to approach the problem. There are many possible ques-
tions to ask—anywhere from dozens to thousands or more—and
people don’t know which of these many questions are the right
ones in advance. In such cases, the best path forward is an anal-
ysis process with a human in the loop, where you can exploit the

1.2. Why Have a Human in the Loop? 3

powerful pattern detection properties of the human visual system
in your design. Vis systems are appropriate for use when your goal
is to augment human capabilities, rather than completely replace
the human in the loop.

You can design vis tools for many kinds of uses. You can make
a tool intended for transitional use where the goal is to “work itself
out of a job”, by helping the designers of future solutions that are
purely computational. You can also make a tool intended for long-
term use, in a situation where there is no intention of replacing the
human any time soon.

For example, you can create a vis tool that’s a stepping stone
to gaining a clearer understanding of analysis requirements before
developing formal mathematical or computational models. This
kind of tool would be used very early in the transition process
in a highly exploratory way, before even starting to develop any
kind of automatic solution. The outcome of designing vis tools
targeted at specific real-world domain problems is often a much
crisper understanding of the user’s task, in addition to the tool
itself.

In the middle stages of a transition, you can build a vis tool
aimed at the designers of a purely computational solution, to help
them refine, debug, or extend that system’s algorithms or under-
stand how the algorithms are affected by changes of parameters.
In this case, your tool is aimed at a very different audience than
the end users of that eventual system; if the end users need vi-
sualization at all, it might be with a very different interface. Re-
turning to the stock market example, a higher-level system that
determines which of multiple trading algorithms to use in vary-
ing circumstances might require careful tuning. A vis tool to help
the algorithm developers analyze its performance might be use-
ful to these developers, but not to people who eventually buy the
software.

You can also design a vis tool for end users in conjunction with
other computational decision making to illuminate whether the au-
tomatic system is doing the right thing according to human judge-
ment. The tool might be intended for interim use when making
deployment decisions in the late stages of a transition, for exam-
ple, to see if the result of a machine learning system seems to be
trustworthy before entrusting it to spend millions of dollars trading
stocks. In some cases vis tools are abandoned after that decision is
made; in other cases vis tools continue to be in play with long-term
use to monitor a system, so that people can take action if they spot
unreasonable behavior.

4 1. What’s Vis, and Why Do It?

Figure 1.1. The Variant View vis tool supports biologists in assessing the impact
of genetic variants by speeding up the exploratory analysis process. From [Ferstay
et al. 13, Figure 1].

In contrast to these transitional uses, you can also design vis
tools for long-term use, where a person will stay in the loop indef-
initely. A common case is exploratory analysis for scientific dis-
covery, where the goal is to speed up and improve a user’s ability
to generate and check hypotheses. Figure 1.1 shows a vis tool
designed to help biologists studying the genetic basis of disease
through analyzing DNA sequence variation. Although these scien-
tists make heavy use of computation as part of their larger work-
flow, there’s no hope of completely automating the process of can-
cer research any time soon.

You can also design vis tools for presentation. In this case,
you’re supporting people who want to explain something that they
already know to others, rather than to explore and analyze the
unknown. For example, The New York Times has deployed sophis-
ticated interactive visualizations in conjunction with news stories.

1.3 Why Have a Computer in the Loop?

By enlisting computation, you can build tools that allow people to
explore or present large datasets that would be completely infeasi-
ble to draw by hand, thus opening up the possibility of seeing how
datasets change over time.

1.3. Why Have a Computer in the Loop? 5

(a) (b)

Figure 1.2. The Cerebral vis tool captures the style of hand-drawn diagrams in biology textbooks with vertical layers
that correspond to places within a cell where interactions between genes occur. (a) A small network of 57 nodes
and 74 edges might be possible to lay out by hand with enough patience. (b) Automatic layout handles this large
network of 760 nodes and 1269 edges and provides a substrate for interactive exploration: the user has moved the
mouse over the MSK1 gene, so all of its immmediate neighbors in the network are highlighted in red. From [Barsky
et al. 07, Figures 1 and 2].

People could create visual representations of datasets manu-
ally, either completely by hand with pencil and paper, or with com-
puterized drawing tools where they individually arrange and color
each item. The scope of what people are willing and able to do
manually is strongly limited by their attention span; they are un-
likely to move beyond tiny static datasets. Arranging even small
datasets of hundreds of items might take hours or days. Most
real-world datasets are much larger, ranging from thousands to
millions to even more. Moreover, many datasets change dynami-
cally over time. Having a computer-based tool generate the visual
representation automatically obviously saves human effort com-
pared to manual creation.

As a designer, you can think about what aspects of hand-drawn
diagrams are important in order to automatically create drawings
that retain the hand-drawn spirit. For example, Figure 1.2 shows

6 1. What’s Vis, and Why Do It?

an example of a vis tool designed to show interactions between
genes in a way similar to stylized drawings that appear in biol-
ogy textbooks, with vertical layers that correspond to the location
within the cell where the interaction occurs [Barsky et al. 07]. Fig-
ure 1.2(a) could be done by hand, while Figure 1.2(b) could not.

1.4 Why Use an External Representation?

External representations augment human capacity by allowing us
to surpass the limitations of our own internal cognition and mem-
ory.

Vis allows people to offload internal cognition and memory us-
age to the perceptual system, using carefully designed images as
a form of external representations, sometimes also called external
memory. External representations can take many forms, including
touchable physical objects like an abacus or a knotted string, but
in this book I focus on what can be shown on the two-dimensional
display surface of a computer screen.

Diagrams can be designed to support perceptual inferences,
which are very easy for humans to make. The advantages of dia-
grams as external memory is that information can be organized by
spatial location, offering the possibility of accelerating both search
and recognition. Search can be sped up by grouping all the items
needed for a specific problem-solving inference together at the same
location. Recognition can also be facilitated by grouping all the rel-
evant information about one item in the same location, avoiding
the need for matching remembered symbolic labels. However, a
nonoptimal diagram may group irrelevant information together, or
support perceptual inferences that aren’t useful for the intended
problem-solving process.

1.5 Why Depend on Vision?

Visualization, as the name implies, is based on exploiting the hu-
man visual system as a means of communication. I focus exclu-
sively on the visual system rather than other sensory modalities
because it is both well characterized and suitable for transmitting
information.

The visual system provides a very high-bandwidth channel to
our brains. A significant amount of visual information processing
occurs in parallel at the preconscious level. One example is visual

1.6. Why Show the Data in Detail? 7

popout, such as when one red item is immediately noticed from a
sea of gray ones. The popout occurs whether the field of other ob-
jects is large or small because of processing done in parallel across
the entire field of vision. Of course, our visual systems also feed
into higher-level processes that involve the conscious control of
attention.

Sound is poorly suited for providing overviews of large informa-
tion spaces compared with vision. An enormous amount of back-
ground visual information processing in our brains underlies our
ability to think and act as if we see a huge amount of information at
once, even though technically we see only a tiny part of our visual
field in high resolution at any given instant. In contrast, we ex-
perience the perceptual channel of sound as a sequential stream,
rather than as a simultaneous experience where what we hear over
a long period of time is automatically merged together. This crucial
difference may explain why sonification has never taken off despite
many independent attempts at experimentation.

The other senses can be immediately ruled out as communica-
tion channels because of technological limitations. The perceptual
channels of taste and smell don’t yet have viable recording and re-
production technology at all. Haptic input and feedback devices
exist to exploit the touch and kinesthetic perceptual channels, but
they cover only a very limited part of the dynamic range of what we
can sense. Exploration of their effectiveness for communicating
abstract information is still at a very early stage.

" Chapter 5 covers impli-
cations of visual perception
that are relevant for vis de-
sign.

1.6 Why Show the Data in Detail?

Vis tools help people in situations where seeing the dataset struc-
ture in detail is better than seeing only a brief summary of it. One
of these situations occurs when exploring the data to find patterns,
both to confirm expected ones and find unexpected ones. Another
occurs when assessing the validity of a statistical model, to judge
whether the model in fact fits the data.

Statistical characterization of datasets is a very powerful ap-
proach, but it has the intrinsic limitation of losing information
through summarization. Figure 1.3 shows Anscombe’s Quartet, a
suite of four small datasets designed by a statistician to illustrate
how datasets that have identical descriptive statistics can have
very different structures that are immediately obvious when the
dataset is shown graphically [Anscombe 73]. All four have identi-
cal mean, variance, correlation, and linear regression lines. If you

8 1. What’s Vis, and Why Do It?

1
X Y

2
X Y

3
X Y

4
X Y

Mean
Variance

Correlation

Anscombe’s Quartet: Raw Data

Figure 1.3. Anscombe’s Quartet is four datasets with identical simple statisti-
cal properties: mean, variance, correlation, and linear regression line. However,
visual inspection immediately shows how their structures are quite different. Af-
ter [Anscombe 73, Figures 1–4].

1.7. Why Use Interactivity? 9

are familiar with these statistical measures, then the scatterplot of
the first dataset probably isn’t surprising, and matches your intu-
ition. The second scatterplot shows a clear nonlinear pattern in
the data, showing that summarizing with linear regression doesn’t
adequately capture what’s really happening. The third dataset
shows how a single outlier can lead to a regression line that’s mis-
leading in a different way because its slope doesn’t quite match
the line that our eyes pick up clearly from the rest of the data.
Finally, the fourth dataset shows a truly pernicious case where
these measures dramatically mislead, with a regression line that’s
almost perpendicular to the true pattern we immediately see in
the data.

The basic principle illustrated by Anscombe’s Quartet, that a
single summary is often an oversimplification that hides the true
structure of the dataset, applies even more to large and complex
datasets.

1.7 Why Use Interactivity?

Interactivity is crucial for building vis tools that handle complex-
ity. When datasets are large enough, the limitations of both people
and displays preclude just showing everything at once; interac-
tion where user actions cause the view to change is the way for-
ward. Moreover, a single static view can show only one aspect of
a dataset. For some combinations of simple datasets and tasks,
the user may only need to see a single visual encoding. In con-
trast, an interactively changing display supports many possible
queries.

In all of these cases, interaction is crucial. For example, an in-
teractive vis tool can support investigation at multiple levels of de-
tail, ranging from a very high-level overview down through multiple
levels of summarization to a fully detailed view of a small part of it.
It can also present different ways of representing and summariz-
ing the data in a way that supports understanding the connections
between these alternatives.

Before the widespread deployment of fast computer graphics,
visualization was limited to the use of static images on paper. With
computer-based vis, interactivity becomes possible, vastly increas-
ing the scope and capabilities of vis tools. Although static repre-
sentations are indeed within the scope of this book, interaction is
an intrinsic part of many idioms.

10 1. What’s Vis, and Why Do It?

1.8 Why Is the Vis Idiom Design Space Huge?

A vis idiom is a distinct approach to creating and manipulating
visual representations. There are many ways to create a visual en-
coding of data as a single picture. The design space of possibilities
gets even bigger when you consider how to manipulate one or more
of these pictures with interaction.

Many vis idioms have been proposed. Simple static idioms in-
clude many chart types that have deep historical roots, such as
scatterplots, bar charts, and line charts. A more complicated id-
iom can link together multiple simple charts through interaction.
For example, selecting one bar in a bar chart could also result in
highlighting associated items in a scatterplot that shows a differ-
ent view of the same data. Figure 1.4 shows an even more com-
plex idiom that supports incremental layout of a multilevel network
through interactive navigation. Data from Internet Movie Database
showing all movies connected to Sharon Stone is shown, where ac-
tors are represented as grey square nodes and links between them

Figure 1.4. The Grouse vis tool features a complex idiom that combines visual
encoding and interaction, supporting incremental layout of a network through in-
teractive navigation. From [Archambault et al. 07a, Figure 5].

1.9. Why Focus on Tasks? 11

mean appearance in the same movie. The user has navigated by
opening up several metanodes, shown as discs, to see structure at
many levels of the hierarchy simultaneously; metanode color en-
codes the topological structure of the network features it contains,
and hexagons indicate metanodes that are still closed. The inset
shows the details of the opened-up clique of actors who all appear
in the movie Anything but Here, with name labels turned on.

" Compound networks are
discussed further in Sec-
tion 9.5.

This book provides a framework for thinking about the space
of vis design idioms systematically by considering a set of design
choices, including how to encode information with spatial position,
how to facet data between multiple views, and how to reduce the
amount of data shown by filtering and aggregation.

1.9 Why Focus on Tasks?

A tool that serves well for one task can be poorly suited for another,
for exactly the same dataset. The task of the users is an equally
important constraint for a vis designer as the kind of data that the
users have.

Reframing the users’ task from domain-specific form into ab-
stract form allows you to consider the similarities and differences
between what people need across many real-world usage contexts.
For example, a vis tool can support presentation, or discovery, or
enjoyment of information; it can also support producing more in-
formation for subsequent use. For discovery, vis can be used to
generate new hypotheses, as when exploring a completely unfamil-
iar dataset, or to confirm existing hypotheses about some dataset
that is already partially understood.

" The space of task ab-
stractions is discussed in
detail in Chapter 3.

1.10 Why Focus on Effectiveness?

The focus on effectiveness is a corollary of defining vis to have the
goal of supporting user tasks. This goal leads to concerns about
correctness, accuracy, and truth playing a very central role in vis.
The emphasis in vis is different from other fields that also involve
making images: for example, art emphasizes conveying emotion,
achieving beauty, or provoking thought; movies and comics em-
phasize telling a narrative story; advertising emphasizes setting a
mood or selling. For the goals of emotional engagement, story-
telling, or allurement, the deliberate distortion and even fabrica-
tion of facts is often entirely appropriate, and of course fiction is as

12 1. What’s Vis, and Why Do It?

respectable as nonfiction. In contrast, a vis designer does not typi-
cally have artistic license. Moreover, the phrase “it’s not just about
making pretty pictures” is a common and vehement assertion in
vis, meaning that the goals of the designer are not met if the result
is beautiful but not effective.

However, no picture can communicate the truth, the whole truth,
and nothing but the truth. The correctness concerns of a vis de-
signer are complicated by the fact that any depiction of data is
an abstraction where choices are made about which aspects to
emphasize. Cartographers have thousands of years of experience

" Abstraction is discussed
in more detail in Chapters 3
and 4. with articulating the difference between the abstraction of a map

and the terrain that it represents. Even photographing a real-world
scene involves choices of abstraction and emphasis; for example,
the photographer chooses what to include in the frame.

1.11 Why Are Most Designs Ineffective?

The most fundamental reason that vis design is a difficult enter-
prise is that the vast majority of the possibilities in the design space
will be ineffective for any specific usage context. In some cases, a
possible design is a poor match with the properties of the human
perceptual and cognitive systems. In other cases, the design would
be comprehensible by a human in some other setting, but it’s a bad
match with the intended task. Only a very small number of pos-
sibilities are in the set of reasonable choices, and of those only
an even smaller fraction are excellent choices. Randomly choosing
possibilities is a bad idea because the odds of finding a very good
solution are very low.

Figure 1.5 contrasts two ways to think about design in terms of
traversing a search space. In addressing design problems, it’s not
a very useful goal to optimize; that is, to find the very best choice. A
more appropriate goal when you design is to satisfy; that is, to find
one of the many possible good solutions rather than one of the even
larger number of bad ones. The diagram shows five spaces, each
of which is progressively smaller than the previous. First, there
is the space of all possible solutions, including potential solutions
that nobody has ever thought of before. Next, there is the set of
possibilities that are known to you, the vis designer. Of course,
this set might be small if you are a novice designer who is not
aware of the full array of methods that have been proposed in the
past. If you’re in that situation, one of the goals of this book is to
enlarge the set of methods that you know about. The next set is the

1.11. Why Are Most Designs Ineffective? 13

x

Consideration
space

Proposal
space

x

Bad!

x

x

xx

o

o o

x o
o

Good!

Space of possible solutions

Known
space

Selected
solution

x

Good solution
OK solution
Poor Solution

x
o

Space of possible solutions

o

x

o

o

o

o

o

o

o

o

Figure 1.5. A search space metaphor for vis design.

consideration space, which contains the solutions that you actively
consider. This set is necessarily smaller than the known space,
because you can’t consider what you don’t know. An even smaller
set is the proposal space of possibilities that you investigate in
detail. Finally, one of these becomes the selected solution.

Figure 1.5 contrasts a good strategy on the left, where the known
and consideration spaces are large, with a bad strategy on the
right, where these spaces are small. The problem of a small con-
sideration space is the higher probability of only considering ok
or poor solutions and missing a good one. A fundamental princi-
ple of design is to consider multiple alternatives and then choose
the best, rather than to immediately fixate on one solution without
considering any alternatives. One way to ensure that more than
one possibility is considered is to explicitly generate multiple ideas
in parallel. This book is intended to help you, the designer, en-
tertain a broad consideration space by systematically considering
many alternatives and to help you rule out some parts of the space
by noting when there are mismatches of possibilities with human
capabilities or the intended task.

As with all design problems, vis design cannot be easily handled
as a simple process of optimization because trade-offs abound. A
design that does well by one measure will rate poorly on another.
The characterization of trade-offs in the vis design space is a very
open problem at the frontier of vis research. This book provides
several guidelines and suggested processes, based on my synthesis
of what is currently known, but it contains few absolute truths.

" Chapter 4 introduces a
model for thinking about
the design process at four
different levels; the model
is intended to guide your
thinking through these
trade-offs in a systematic
way.

14 1. What’s Vis, and Why Do It?

1.12 Why Is Validation Difficult?

The problem of validation for a vis design is difficult because there
are so many questions that you could ask when considering whether
a vis tool has met your design goals.

How do you know if it works? How do you argue that one de-
sign is better or worse than another for the intended users? For
one thing, what does better mean? Do users get something done
faster? Do they have more fun doing it? Can they work more effec-
tively? What does effectively mean? How do you measure insight
or engagement? What is the design better than? Is it better than
another vis system? Is it better than doing the same things man-
ually, without visual support? Is it better than doing the same
things completely automatically? And what sort of thing does it
do better? That is, how do you decide what sort of task the users
should do when testing the system? And who is this user? An ex-
pert who has done this task for decades, or a novice who needs the
task to be explained before they begin? Are they familiar with how
the system works from using it for a long time, or are they seeing
it for the first time? A concept like faster might seem straightfor-
ward, but tricky questions still remain. Are the users limited by
the speed of their own thought process, or their ability to move
the mouse, or simply the speed of the computer in drawing each
picture?

How do you decide what sort of benchmark data you should
use when testing the system? Can you characterize what classes
of data the system is suitable for? How might you measure the
quality of an image generated by a vis tool? How well do any of
the automatically computed quantitative metrics of quality match
up with human judgements? Even once you limit your considera-
tions to purely computational issues, questions remain. Does the
complexity of the algorithm depend on the number of data items to
show or the number of pixels to draw? Is there a trade-off between
computer speed and computer memory usage?

" Chapter 4 answers these
questions by providing a
framework that addresses
when to use what methods
for validating vis designs.

1.13 Why Are There Resource Limitations?

When designing or analyzing a vis system, you must consider at
least three different kinds of limitations: computational capacity,
human perceptual and cognitive capacity, and display capacity.

Vis systems are inevitably used for larger datasets than those
they were designed for. Thus, scalability is a central concern: de-

1.13. Why Are There Resource Limitations? 15

signing systems to handle large amounts of data gracefully. The
continuing increase in dataset size is driven by many factors: im-
provements in data acquisition and sensor technology, bringing
real-world data into a computational context; improvements in
computer capacity, leading to ever-more generation of data from
within computational environments including simulation and log-
ging; and the increasing reach of computational infrastructure into
every aspect of life.

As with any application of computer science, computer time and
memory are limited resources, and there are often soft and hard
constraints on the availability of these resources. For instance, if
your vis system needs to interactively deliver a response to user in-
put, then when drawing each frame you must use algorithms that
can run in a fraction of a second rather than minutes or hours. In
some scenarios, users are unwilling or unable to wait a long time
for the system to preprocess the data before they can interact with
it. A soft constraint is that the vis system should be parsimonious
in its use of computer memory because the user needs to run other
programs simultaneously. A hard constraint is that even if the
vis system can use nearly all available memory in the computer,
dataset size can easily outstrip that finite capacity. Designing sys-
tems that gracefully handle larger datasets that do not fit into core
memory requires significantly more complex algorithms. Thus, the
computational complexity of algorithms for dataset preprocessing,
transformation, layout, and rendering is a major concern. How-
ever, computational issues are by no means the only concern!

On the human side, memory and attention are finite resources.
Chapter 5 will discuss some of the power and limitations of the
low-level visual preattentive mechanisms that carry out massively
parallel processing of our current visual field. However, human
memory for things that are not directly visible is notoriously lim-
ited. These limits come into play not only for long-term recall but
also for shorter-term working memory, both visual and nonvisual.
We store surprisingly little information internally in visual work-
ing memory, leaving us vulnerable to change blindness: the phe-
nomenon where even very large changes are not noticed if we are
attending to something else in our view [Simons 00].

" More aspects of memory
and attention are covered in
Section 6.5.

Display capacity is a third kind of limitation to consider. Vis de-
signers often run out of pixels; that is, the resolution of the screen
is not enough to show all desired information simultaneously. The
information density of a single image is a measure of the amount
of information encoded versus the amount of unused space.⋆ Fig-

⋆ Synonyms for informa-
tion density include gra-
phic density and data–ink
ratio.ure 1.6 shows the same tree dataset visually encoded three differ-

16 1. What’s Vis, and Why Do It?

(a)

(b) (c)

Figure 1.6. Low and high information density visual encodings of the same small
tree dataset; nodes are the same size in each. (a) Low information density. (b)
Higher information density, but depth in tree cannot be read from spatial position.
(c) High information density, while maintaining property that depth is encoded with
position. From [McGuffin and Robert 10, Figure 3].

ent ways. The layout in Figure 1.6(a) encodes the depth from root
to leaves in the tree with vertical spatial position. However, the
information density is low. In contrast, the layout in Figure 1.6(b)
uses nodes of the same size but is drawn more compactly, so it
has higher information density; that is, the ratio between the size
of each node and the area required to display the entire tree is
larger. However, the depth cannot be easily read off from spatial
position. Figure 1.6(c) shows a very good alternative that combines
the benefits of both previous approaches, with both high informa-
tion density from a compact view and position coding for depth.

There is a trade-off between the benefits of showing as much
as possible at once, to minimize the need for navigation and explo-
ration, and the costs of showing too much at once, where the user
is overwhelmed by visual clutter. The goal of idiom design choices
is to find an appropriate balance between these two ends of the
information density continuum.

1.14 Why Analyze?

This book is built around the premise that analyzing existing sys-
tems is a good stepping stone to designing new ones. When you’re
confronted with a vis problem as a designer, it can be hard to de-
cide what to do. Many computer-based vis idioms and tools have

1.14. Why Analyze? 17

Why?

How?

What?

Figure 1.7. Three-part analysis framework for a vis instance: why is the task being
performed, what data is shown in the views, and how is the vis idiom constructed
in terms of design choices.

been created in the past several decades, and considering them
one by one leaves you faced with a big collection of different pos-
sibilities. There are so many possible combinations of data, tasks,
and idioms that it’s unlikely that you’ll find exactly what you need
to know just by reading papers about previous vis tools. More-
over, even if you find a likely candidate, you might need to dig
even deeper into the literature to understand whether there’s any
evidence that the tool was a success.

This book features an analysis framework that imposes a struc-
ture on this enormous design space, intended as a scaffold to help
you think about design choices systematically. It’s offered as a
guide to get you started, not as a straitjacket: there are certainly
many other possible ways to think about these problems!

Figure 1.7 shows the high-level framework for analyzing vis use
according to three questions: what data the user sees, why the
user intends to use a vis tool, and how the visual encoding and in-
teraction idioms are constructed in terms of design choices. Each
three-fold what–why–how question has a corresponding data–task–
idiom answer trio. One of these analysis trios is called an instance.

" Chapter 2 discusses data
and the question of what.
Chapter 3 covers tasks and
the question of why. Chap-
ters 7 through 14 answer
the question of how idioms
can be designed in detail.Simple vis tools can be fully described as an isolated analy-

sis instance, but complex vis tool usage often requires analysis
in terms of a sequence of instances that are chained together. In
these cases, the chained sequences are a way to express dependen-
cies. All analysis instances have the input of what data is shown;
in some cases, output data is produced as a result of using the
vis tool. Figure 1.8 shows an abstract example of a chained se-
quence, where the output of a prior instance serves as the input to
a subsequent one.

The combination of distinguishing why from how and chained
sequences allows you to distinguish between means and ends in

18 1. What’s Vis, and Why Do It?

Why?

How?

What?

Why?

How?

What?

Why?

How?

What?

Figure 1.8. Analyzing vis usage as chained sequences of instances, where the
output of one instance is the input to another.

your analysis. For example, a user could sort the items shown
within the vis. That operation could be an end in itself, if the user’s
goal is to produce a list of items ranked according to a particular
criterion as a result of an analysis session. Or, the sorting could be
the means to another end, for example, finding outliers that do not
match the main trend of the data; in this case, it is simply done
along the way as one of many different operations.

1.15 Further Reading
Each Further Reading section provides suggestions for further read-
ing about some of the ideas presented in the chapter and acknowl-
edges key sources that influenced the discussion.

Why Use an External Representation? The role and use of external
representations are analyzed in papers on the nature of ex-

1.15. Further Reading 19

ternal representations in problem solving [Zhang 97] and a
representational analysis of number systems [Zhang and Nor-
man 95]. The influential paper Why A Diagram Is (Sometimes)
Worth Ten Thousand Words is the basis for my discussion of
diagrams in this chapter [Larkin and Simon 87].

Why Show the Data in Detail? Anscombe proposed his quartet of illus-
trative examples in a lovely, concise paper [Anscombe 73]. An
early paper on the many faces of the scatterplot includes a
cogent discussion of why to show as much of the data as pos-
sible [Cleveland and McGill 84b].

What Is the Vis Design Space? My discussion of the vis design space
is based on our paper on the methodology of design studies
that covers the question of progressing from a loose to a crisp
understanding of the user’s requirements [Sedlmair et al. 12].

What Resource Limitations Matter? Ware’s textbook provides a very thor-
ough discussion of human limitations in terms of perception,
memory, and cognition [Ware 13]. A survey paper provides a
good overview of the change blindness literature [Simons 00].

The idea of information density dates back to Bertin’s discus-
sion of graphic density [Bertin 67], and Tufte has discussed
the data–ink ratio at length [Tufte 83].

Why?

How?

What?

Datasets

What?
Attributes

Dataset Types

Data Types

Data and Dataset Types

Dataset Availability

Static Dynamic

Tables

Attributes (columns)

Items
(rows)

Cell containing value

Networks

Link

Node
(item)

Trees

Fields (Continuous)

Geometry (Spatial)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Items Attributes Links Positions Grids

Attribute Types

Ordering Direction

Categorical

Ordered
Ordinal

Quantitative

Sequential

Diverging

Cyclic

Tables Networks &
Trees

Fields Geometry Clusters,
Sets, Lists

Items

Attributes

Items (nodes)

Links

Attributes

Grids

Positions

Attributes

Items

Positions

Items

Grid of positions

Position

Figure 2.1. What can be visualized: data, datasets, and attributes.

What: Data Abstraction

Chapter 2

2.1 The Big Picture

Figure 2.1 shows the abstract types of what can be visualized. The
four basic dataset types are tables, networks, fields, and geome-
try; other possible collections of items include clusters, sets, and
lists. These datasets are made up of different combinations of the
five data types: items, attributes, links, positions, and grids. For
any of these dataset types, the full dataset could be available im-
mediately in the form of a static file, or it might be dynamic data
processed gradually in the form of a stream. The type of an at-
tribute can be categorical or ordered, with a further split into or-
dinal and quantitative. The ordering direction of attributes can be
sequential, diverging, or cyclic.

2.2 Why Do Data Semantics
and Types Matter?

Many aspects of vis design are driven by the kind of data that you
have at your disposal. What kind of data are you given? What
information can you figure out from the data, versus the meanings
that you must be told explicitly? What high-level concepts will
allow you to split datasets apart into general and useful pieces?

Suppose that you see the following data:

14, 2.6, 30, 30, 15, 100001

What does this sequence of six numbers mean? You can’t pos-
sibly know yet, without more information about how to interpret
each number. Is it locations for two points far from each other
in three-dimensional space, 14, 2.6, 30 and 30, 15, 100001? Is it two
points closer to each other in two-dimensional space, 14, 2.6 and

21

22 2. What: Data Abstraction

30, 30, with the fifth number meaning that there are 15 links be-
tween these two points, and the sixth number assigning the weight
of ‘100001’ to that link?

Similarly, suppose that you see the following data:

Basil, 7, S, Pear

These numbers and words could have many possible meanings.
Maybe a food shipment of produce has arrived in satisfactory con-
dition on the 7th day of the month, containing basil and pears.
Maybe the Basil Point neighborhood of the city has had 7 inches
of snow cleared by the Pear Creek Limited snow removal service.
Maybe the lab rat named Basil has made seven attempts to find
his way through the south section of the maze, lured by scent of
the reward food for this trial, a pear.

To move beyond guesses, you need to know two crosscutting
pieces of information about these terms: their semantics and their
types. The semantics of the data is its real-world meaning. For
instance, does a word represent a human first name, or is it the
shortened version of a company name where the full name can be
looked up in an external list, or is it a city, or is it a fruit? Does a
number represent a day of the month, or an age, or a measurement
of height, or a unique code for a specific person, or a postal code
for a neighborhood, or a position in space?

The type of the data is its structural or mathematical interpre-
tation. At the data level, what kind of thing is it: an item, a link, an
attribute? At the dataset level, how are these data types combined
into a larger structure: a table, a tree, a field of sampled values?
At the attribute level, what kinds of mathematical operations are
meaningful for it? For example, if a number represents a count of
boxes of detergent, then its type is a quantity, and adding two such
numbers together makes sense. If the number represents a postal
code, then its type is a code rather than a quantity—it is simply
the name for a category that happens to be a number rather than
a textual name. Adding two of these numbers together does not
make sense.

Table 2.1 shows several more lines of the same dataset. This
simple example table is tiny, with only nine rows and four columns.
The exact semantics should be provided by the creator of the data-
set; I give it with the column titles. In this case, each person has a
unique identifier, a name, an age, a shirt size, and a favorite fruit.

Sometimes types and semantics can be correctly inferred simply
by observing the syntax of a data file or the names of variables

2.3. Data Types 23

ID Name Age Shirt Size Favorite Fruit
1 Amy 8 S Apple
2 Basil 7 S Pear
3 Clara 9 M Durian
4 Desmond 13 L Elderberry
5 Ernest 12 L Peach
6 Fanny 10 S Lychee
7 George 9 M Orange
8 Hector 8 L Loquat
9 Ida 10 M Pear
10 Amy 12 M Orange

Table 2.1. A full table with column titles that provide the intended semantics of the
attributes.

within it, but often they must be provided along with the dataset
in order for it to be interpreted correctly. Sometimes this kind of
additional information is called metadata; the line between data
and metadata is not clear, especially given that the original data
is often derived and transformed. In this book, I don’t distinguish

" Deriving data is dis-
cussed in Section 3.4.2.3.

between them, and refer to everything as data.
The classification below presents a way to think about dataset

and attribute types and semantics in a way that is general enough
to cover the cases interesting in vis, yet specific enough to be help-
ful for guiding design choices at the abstraction and idiom levels.

2.3 Data Types

Figure 2.2 shows the five basic data types discussed in this book:
items, attributes, links, positions, and grids. An attribute is some
specific property that can be measured, observed, or logged.⋆ For

⋆ Synonyms for attribute
are variable and data di-
mension, or just dimen-
sion for short. Since dimen-
sion has many meanings, in
this book it is reserved for
the visual channels of spa-
tial position as discussed in
Section 6.3.

example, attributes could be salary, price, number of sales, pro-
tein expression levels, or temperature. An item is an individual
entity that is discrete, such as a row in a simple table or a node

Data Types

Items Attributes Links Positions Grids

Figure 2.2. The five basic data types: items, attributes, links, positions, and grids.

24 2. What: Data Abstraction

in a network. For example, items may be people, stocks, coffee
shops, genes, or cities. A link is a relationship between items, typ-
ically within a network. A grid specifies the strategy for sampling
continuous data in terms of both geometric and topological rela-
tionships between its cells. A position is spatial data, providing a
location in two-dimensional (2D) or three-dimensional (3D) space.
For example, a position might be a latitude–longitude pair describ-
ing a location on the Earth’s surface or three numbers specifying a
location within the region of space measured by a medical scanner.

2.4 Dataset Types

A dataset is any collection of information that is the target of anal-
ysis.⋆ The four basic dataset types are tables, networks, fields, and

⋆ The word dataset is sin-
gular. In vis the word data
is commonly used as a sin-
gular mass noun as well,
in contrast to the traditional
usage in the natural sci-
ences where data is plural.

geometry. Other ways to group items together include clusters,
sets, and lists. In real-world situations, complex combinations of
these basic types are common.

Figure 2.3 shows that these basic dataset types arise from com-
binations of the data types of items, attributes, links, positions,
and grids.

Figure 2.4 shows the internal structure of the four basic dataset
types in detail. Tables have cells indexed by items and attributes,
for either the simple flat case or the more complex multidimen-
sional case. In a network, items are usually called nodes, and
they are connected with links; a special case of networks is trees.
Continuous fields have grids based on spatial positions where cells
contain attributes. Spatial geometry has only position information.

Data and Dataset Types

Tables Networks &
Trees

Fields Geometry Clusters,
Sets, Lists

Items

Attributes

Items (nodes)

Links

Attributes

Grids

Positions

Attributes

Items

Positions

Items

Figure 2.3. The four basic dataset types are tables, networks, fields, and geome-
try; other possible collections of items are clusters, sets, and lists. These datasets
are made up of five core data types: items, attributes, links, positions, and grids.

2.4. Dataset Types 25

Tables

Attributes (columns)

Items
(rows)

Cell containing value

Networks

Link

Node
(item)

Trees

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Dataset Types

Figure 2.4. The detailed structure of the four basic dataset types.

2.4.1 Tables

Many datasets come in the form of tables that are made up of
rows and columns, a familiar form to anybody who has used a
spreadsheet. In this chapter, I focus on the concept of a table as
simply a type of dataset that is independent of any particular visual
representation; later chapters address the question of what visual
representations are appropriate for the different types of datasets.

" Chapter 7 covers how to
arrange tables spatially.

For a simple flat table, the terms used in this book are that each
row represents an item of data, and each column is an attribute of
the dataset. Each cell in the table is fully specified by the com-
bination of a row and a column—an item and an attribute—and
contains a value for that pair. Figure 2.5 shows an example of
the first few dozen items in a table of orders, where the attributes
are order ID, order date, order priority, product container, product
base margin, and ship date.

A multidimensional table has a more complex structure for in-
dexing into a cell, with multiple keys.

" Keys and values are
discussed further in Sec-
tion 2.6.1.

26 2. What: Data Abstraction

20

Fieldattribute

item cell

Figure 2.5. In a simple table of orders, a row represents an item, a column rep-
resents an attribute, and their intersection is the cell containing the value for that
pairwise combination.

2.4.2 Networks and Trees

The dataset type of networks is well suited for specifying that there
is some kind of relationship between two or more items.⋆ An item in

⋆ A synonym for networks
is graphs. The word graph
is also deeply overloaded in
vis. Sometimes it is used
to mean network as we dis-
cuss here, for instance in
the vis subfield called graph
drawing or the mathemat-
ical subfield called graph
theory. Sometimes it is
used in the field of statisti-
cal graphics to mean chart,
as in bar graphs and line
graphs.

a network is often called a node.⋆ A link is a relation between two

⋆ A synonym for node is
vertex.

items.⋆ For example, in an articulated social network the nodes

⋆ A synonym for link is
edge.

are people, and links mean friendship. In a gene interaction net-
work, the nodes are genes, and links between them mean that
these genes have been observed to interact with each other. In a
computer network, the nodes are computers, and the links repre-
sent the ability to send messages directly between two computers
using physical cables or a wireless connection.

Network nodes can have associated attributes, just like items in
a table. In addition, the links themselves could also be considered
to have attributes associated with them; these may be partly or
wholly disjoint from the node attributes.

2.4. Dataset Types 27

It is again important to distinguish between the abstract con-
cept of a network and any particular visual layout of that network
where the nodes and edges have particular spatial positions. This
chapter concentrates on the former.

" The spatial arrangement
of networks is covered in
Chapter 9.

2.4.2.1 Trees

Networks with hierarchical structure are more specifically called
trees. In contrast to a general network, trees do not have cycles:
each child node has only one parent node pointing to it. One exam-
ple of a tree is the organization chart of a company, showing who
reports to whom; another example is a tree showing the evolu-
tionary relationships between species in the biological tree of life,
where the child nodes of humans and monkeys both share the
same parent node of primates.

2.4.3 Fields
The field dataset type also contains attribute values associated
with cells.1 Each cell in a field contains measurements or calcula-
tions from a continuous domain: there are conceptually infinitely
many values that you might measure, so you could always take
a new measurement between any two existing ones. Continuous
phenomena that might be measured in the physical world or simu-
lated in software include temperature, pressure, speed, force, and
density; mathematical functions can also be continuous.

For example, consider a field dataset representing a medical
scan of a human body containing measurements indicating the
density of tissue at many sample points, spread regularly through-
out a volume of 3D space. A low-resolution scan would have
262,144 cells, providing information about a cubical volume of
space with 64 bins in each direction. Each cell is associated with
a specific region in 3D space. The density measurements could
be taken closer together with a higher resolution grid of cells, or
further apart for a coarser grid.

Continuous data requires careful treatment that takes into ac-
count the mathematical questions of sampling, how frequently to

1My use of the term field is related to but not identical to its use in the math-
ematics literature, where it denotes a mapping from a domain to a range. In this
case, the domain is a Euclidean space of one, two, or three dimensions, and the ad-
jective modifying field is a statement about the range: scalars, vectors, or tensors.
Although the term field by itself is not commonly found in the literature, when I
use it without an adjective I’m emphasizing the continuous nature of the domain,
rather than specifics of the ranges of scalars, vectors, or tensors.

28 2. What: Data Abstraction

take the measurements, and interpolation, how to show values in
between the sampled points in a way that does not mislead. In-
terpolating appropriately between the measurements allows you
to reconstruct a new view of the data from an arbitrary viewpoint
that’s faithful to what you measured. These general mathematical
problems are studied in areas such as signal processing and statis-
tics. Visualizing fields requires grappling extensively with these
concerns.

In contrast, the table and network datatypes discussed above
are an example of discrete data where a finite number of individ-
ual items exist, and interpolation between them is not a mean-
ingful concept. In the cases where a mathematical framework is
necessary, areas such as graph theory and combinatorics provide
relevant ideas.2

2.4.3.1 Spatial Fields

Continuous data is often found in the form of a spatial field, where
the cell structure of the field is based on sampling at spatial po-
sitions. Most datasets that contain inherently spatial data occur
in the context of tasks that require understanding aspects of its
spatial structure, especially shape.

For example, with a spatial field dataset that is generated with a
medical imaging instrument, the user’s task could be to locate sus-
pected tumors that can be recognized through distinctive shapes or
densities. An obvious choice for visual encoding would be to show
something that spatially looks like an X-ray image of the human
body and to use color coding to highlight suspected tumors. An-
other example is measurements made in a real or simulated wind
tunnel of the temperature and pressure of air flowing over airplane
wings at many points in 3D space, where the task is to compare
the flow patterns in different regions. One possible visual encod-
ing would use the geometry of the wing as the spatial substrate,
showing the temperature and pressure using size-coded arrows.

The likely tasks faced by users who have spatial field data con-
strains many of the choices about the use of space when designing
visual encoding idioms. Many of the choices for nonspatial data,
where no information about spatial position is provided with the
dataset, are unsuitable in this case.⋆

⋆ A synonym for nonspatial
data is abstract data.

2Technically, all data stored within a computer is discrete rather than continu-
ous; however, the interesting question is whether the underlying semantics of the
bits that are stored represents samples of a continuous phenomenon or intrinsically
discrete data.

2.4. Dataset Types 29

Thus, the question of whether a dataset has the type of a spa-
tial field or a nonspatial table has extensive and far-reaching im-
plications for idiom design. Historically, vis diverged into areas of
specialization based on this very differentiation. The subfield of
scientific visualization, or scivis for short, is concerned with situ-
ations where spatial position is given with the dataset. A central
concern in scivis is handling continuous data appropriately within
the mathematical framework of signal processing. The subfield of
information visualization, or infovis for short, is concerned with sit-
uations where the use of space in a visual encoding is chosen by
the designer. A central concern in infovis is determining whether
the chosen idiom is suitable for the combination of data and task,
leading to the use of methods from human–computer interaction
and design.

2.4.3.2 Grid Types

When a field contains data created by sampling at completely reg-
ular intervals, as in the previous example, the cells form a uniform
grid. There is no need to explicitly store the grid geometry in terms
of its location in space, or the grid topology in terms of how each
cell connects with its neighboring cells. More complicated exam-
ples require storing different amounts of geometric and topological
information about the underlying grid. A rectilinear grid supports
nonuniform sampling, allowing efficient storage of information that
has high complexity in some areas and low complexity in others, at
the cost of storing some information about the geometric location of
each each row. A structured grid allows curvilinear shapes, where
the geometric location of each cell needs to be specified. Finally,
unstructured grids provide complete flexibility, but the topological
information about how the cells connect to each other must be
stored explicitly in addition to their spatial positions.

2.4.4 Geometry
The geometry dataset type specifies information about the shape
of items with explicit spatial positions. The items could be points,
or one-dimensional lines or curves, or 2D surfaces or regions, or
3D volumes.

Geometry datasets are intrinsically spatial, and like spatial fields
they typically occur in the context of tasks that require shape un-
derstanding. Spatial data often includes hierarchical structure at
multiple scales. Sometimes this structure is provided intrinsically

30 2. What: Data Abstraction

with the dataset, or a hierarchy may be derived from the original
data.

Geometry datasets do not necessarily have attributes, in con-
trast to the other three basic dataset types. Many of the design
issues in vis pertain to questions about how to encode attributes.
Purely geometric data is interesting in a vis context only when it
is derived or transformed in a way that requires consideration of
design choices. One classic example is when contours are derived

" Section 3.4.2.3 covers
deriving data.

from a spatial field. Another is when shapes are generated at an
" Section 8.4 covers gen-
erating contours from scalar
fields.

appropriate level of detail for the task at hand from raw geographic
data, such as the boundaries of a forest or a city or a country, or
the curve of a road. The problem of how to create images from a ge-
ometric description of a scene falls into another domain: computer
graphics. While vis draws on algorithms from computer graphics,
it has different concerns from that domain. Simply showing a geo-
metric dataset is not an interesting problem from the point of view
of a vis designer.

Geometric data is sometimes shown alone, particularly when
shape understanding is the primary task. In other cases, it is the
backdrop against which additional information is overlaid.

2.4.5 Other Combinations
Beyond tables, there are many ways to group multiple items to-
gether, including sets, lists, and clusters. A set is simply an un-
ordered group of items. A group of items with a specified ordering
could be called a list.⋆ A cluster is a grouping based on attribute⋆ In computer science, ar-

ray is often used as a syn-
onym for list.

similarity, where items within a cluster are more similar to each
other than to ones in another cluster.

There are also more complex structures built on top of the basic
network type. A path through a network is an ordered set of seg-
ments formed by links connecting nodes. A compound network is
a network with an associated tree: all of the nodes in the network
are the leaves of the tree, and interior nodes in the tree provide a
hierarchical structure for the nodes that is different from network
links between them.

Many other kinds of data either fit into one of the previous cat-
egories or do so after transformations to create derived attributes.
Complex and hybrid combinations, where the complete dataset
contains multiple basic types, are common in real-world applica-
tions.

The set of basic types presented above is a starting point for
describing the what part of an analysis instance that pertains to

2.5. Attribute Types 31

Dataset Availability

Static Dynamic

Figure 2.6. Dataset availability can be either static or dynamic, for any dataset
type.

data; that is, the data abstraction. In simple cases, it may be possi-
ble to describe your data abstraction using only that set of terms.
In complex cases, you may need additional description as well.
If so, your goal should be to translate domain-specific terms into
words that are as generic as possible.

2.4.6 Dataset Availability
Figure 2.6 shows the two kinds of dataset availability: static or
dynamic.

The default approach to vis assumes that the entire dataset is
available all at once, as a static file. However, some datasets are
instead dynamic streams, where the dataset information trickles in
over the course of the vis session.⋆ One kind of dynamic change is ⋆ A synonym for dynamic

is online, and a synonym
for static is offline.

to add new items or delete previous items. Another is to change
the values of existing items.

This distinction in availability crosscuts the basic dataset types:
any of them can be static or dynamic. Designing for streaming
data adds complexity to many aspects of the vis process that are
straightforward when there is complete dataset availability up front.

2.5 Attribute Types

Figure 2.7 shows the attribute types. The major disinction is be-
tween categorical versus ordered. Within the ordered type is a
further differentiation between ordinal versus quantitative. Or-
dered data might range sequentially from a minimum to a maxi-
mum value, or it might diverge in both directions from a zero point
in the middle of a range, or the values may wrap around in a cycle.
Also, attributes may have hierarchical structure.

32 2. What: Data Abstraction

Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Figure 2.7. Attribute types are categorical, ordinal, or quantitative. The direction
of attribute ordering can be sequential, diverging, or cyclic.

2.5.1 Categorical
The first distinction is between categorical and ordered data. The
type of categorical data, such as favorite fruit or names, does not
have an implicit ordering, but it often has hierarchical structure.⋆⋆ A synonym for categori-

cal is nominal. Categories can only distinguish whether two things are the same
(apples) or different (apples versus oranges). Of course, any ar-
bitrary external ordering can be imposed upon categorical data.
Fruit could be ordered alphabetically according to its name, or
by its price—but only if that auxiliary information were available.
However, these orderings are not implicit in the attribute itself, the
way they are with quantitative or ordered data. Other examples of
categorical attributes are movie genres, file types, and city names.

2.5.2 Ordered: Ordinal and Quantitative
All ordered data does have an implicit ordering, as opposed to un-
ordered categorical data. This type can be further subdivided. With
ordinal data, such as shirt size, we cannot do full-fledged arith-
metic, but there is a well-defined ordering. For example, large
minus medium is not a meaningful concept, but we know that
medium falls between small and large. Rankings are another kind

2.5. Attribute Types 33

of ordinal data; some examples of ordered data are top-ten lists of
movies or initial lineups for sports tournaments depending on past
performance.

A subset of ordered data is quantitative data, namely, a mea-
surement of magnitude that supports arithmetic comparison. For
example, the quantity of 68 inches minus 42 inches is a mean-
ingful concept, and the answer of 26 inches can be calculated.
Other examples of quantitative data are height, weight, tempera-
ture, stock price, number of calling functions in a program, and
number of drinks sold at a coffee shop in a day. Both integers and
real numbers are quantitative data.3

In this book, the ordered type is used often; the ordinal type is
only occasionally mentioned, when the distinction between it and
the quantitative type matters.

2.5.2.1 Sequential versus Diverging

Ordered data can be either sequential, where there is a homoge-
neous range from a minimum to a maximum value, or diverging,
which can be deconstructed into two sequences pointing in oppo-
site directions that meet at a common zero point. For instance,
a mountain height dataset is sequential, when measured from a
minimum point of sea level to a maximum point of Mount Everest.
A bathymetric dataset is also sequential, with sea level on one end
and the lowest point on the ocean floor at the other. A full elevation
dataset would be diverging, where the values go up for mountains
on land and down for undersea valleys, with the zero value of sea
level being the common point joining the two sequential datasets.

2.5.2.2 Cyclic

Ordered data may be cyclic, where the values wrap around back
to a starting point rather than continuing to increase indefinitely.
Many kinds of time measurements are cyclic, including the hour
of the day, the day of the week, and the month of the year.

2.5.3 Hierarchical Attributes
There may be hierarchical structure within an attribute or between
multiple attributes. The daily stock prices of companies collected

3In some domains the quantitative category is further split into interval versus
ratio data [Stevens 46]; this distinction is typically not useful when designing a
visual encoding, so in this book these types remain collapsed together into this
single category.

34 2. What: Data Abstraction

over the course of a decade is an example of a time-series data-
set, where one of the attributes is time. In this case, time can be
aggregated hierarchically, from individual days up to weeks, up to
months, up to years. There may be interesting patterns at mul-
tiple temporal scales, such as very strong weekly variations for
weekday versus weekend, or more subtle yearly patterns show-
ing seasonal variations in summer versus winter. Many kinds of
attributes might have this sort of hierarchical structure: for exam-
ple, the geographic attribute of a postal code can be aggregated up
to the level of cities or states or entire countries.

" Section 13.4 covers hi-
erarchical aggregation in
more detail, and Section 7.5
covers the visual encoding
of attribute hierarchies.

2.6 Semantics

Knowing the type of an attribute does not tell us about its seman-
tics, because these two questions are crosscutting: one does not
dictate the other. Different approaches to considering the seman-
tics of attributes that have been proposed across the many fields
where these semantics are studied. The classification in this book
is heavily focused on the semantics of keys versus values, and the
related questions of spatial and continuous data versus nonspa-
tial and discrete data, to match up with the idiom design choice
analysis framework. One additional consideration is whether an
attribute is temporal.

2.6.1 Key versus Value Semantics
A key attribute acts as an index that is used to look up value at-
tributes.⋆ The distinction between key and value attributes is im-

⋆ A synonym for key at-
tribute is independent at-
tribute. A synonym for
value attribute is depen-
dent attribute. The lan-
guage of independent and
dependent is common in
statistics. In the language
of data warehouses, a syn-
onym for independent is di-
mension, and a synonym
for dependent is measure.

portant for the dataset types of tables and fields, as shown in Fig-
ure 2.8.

2.6.1.1 Flat Tables

A simple flat table has only one key, where each item corresponds
to a row in the table, and any number of value attributes. In this
case, the key might be completely implicit, where it’s simply the in-
dex of the row. It might be explicit, where it is contained within the
table as an attribute. In this case, there must not be any duplicate
values within that attribute. In tables, keys may be categorical or
ordinal attributes, but quantititive attributes are typically unsuit-
able as keys because there is nothing to prevent them from having
the same values for multiple items.

2.6. Semantics 35

Tables

Attributes (columns)

Items
(rows)

Cell containing value

Multidimensional Table

Value in cell

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Grid of positions

Figure 2.8. Key and value semantics for tables and fields.

For example, in Table 2.1, Name is a categorical attribute that
might appear to be a reasonable key at first, but the last line shows
that two people have the same name, so it is not a good choice. Fa-
vorite Fruit is clearly not a key, despite being categorical, because
Pear appears in two different rows. The quantitative attribute of
Age has many duplicate values, as does the ordinal attribute of
Shirt Size. The first attribute in this flat table has an explicit unique
identifier that acts as the key.4 This key attribute could either be
ordinal, for example if the order that the rows were entered into
the table captures interesting temporal information, or categorical,
if it’s simply treated as a unique code.

Figure 2.9 shows the order table from Figure 2.5 where each
attribute is colored according to its type. There is no explicit key:
even the Order ID attribute has duplicates, because orders consist
of multiple items with different container sizes, so it does not act
as a unique identifier. This table is an example of using an implicit
key that is the row number within the table.

4It’s common to store the key attribute in the first column, for understandability
by people and ease of building data structures by computers.

36 2. What: Data Abstraction

22
1 = Quantitative
2 = Nominal
3 = Ordinal

1 = Quantitative
222 = Nominal
333 = Ordinal

 quantitative
 ordinal
 categorical

Figure 2.9. The order table with the attribute columns colored by their type; none
of them is a key.

2.6.1.2 Multidimensional Tables

The more complex case is a multidimensional table, where multi-
ple keys are required to look up an item. The combination of all
keys must be unique for each item, even though an individual key
attribute may contain duplicates. For example, a common multidi-
mensional table from the biology domain has a gene as one key and
time as another key, so that the value in each cell is the activity
level of a gene at a particular time.

The information about which attributes are keys and which are
values may not be available; in many instances determining which
attributes are independent keys versus dependent values is the
goal of the vis process, rather than its starting point. In this case,
the successful outcome of analysis using vis might be to recast a
flat table into a more semantically meaningful multidimensional
table.

2.6. Semantics 37

2.6.1.3 Fields

Although fields differ from tables a fundamental way because they
represent continuous rather than discrete data, keys and values
are still central concerns. (Different vocabulary for the same basic
idea is more common with spatial field data, where the term in-
dependent variable is used instead of key, and dependent variable
instead of value.)

Fields are structured by sampling in a systematic way so that
each grid cell is spanned by a unique range from a continuous
domain. In spatial fields, spatial position acts as a quantitative
key, in contrast to a nonspatial attribute in the case of a table that
is categorical or ordinal. The crucial difference between fields and
tables is that useful answers for attribute values are returned for
locations throughout the sampled range, not just the exact points
where data was recorded.

Fields are typically characterized in terms of the number of keys
versus values. Their multivariate structure depends on the number
of value attributes, and their multidimensional structure depends
on the number of keys. The standard multidimensional cases are
2D and 3D fields for static measurements taken in two or three
spatial dimensions,5 and fields with three or four keys, in the case
where these measurements are time-varying. A field can be both
multidimensional and multivariate if it has multiple keys and mul-
tiple values. The standard classification according to multivariate
structure is that a scalar field has one attribute per cell, a vector
field has two or more attributes per cell, and a tensor field has
many attributes per cell.⋆

⋆ These definitions of
scalar, vector, and ten-
sor follow the common
usage in vis. In a strict
mathematical sense, these
distinctions are not techni-
cally correct, since scalars
and vectors are included
as a degenerate case
of tensors. Mapping the
mathematical usage to the
vis usage, scalars mean
mathematical tensors of
order 0, vectors mean
mathematical tensors of
order 1, and tensors mean
mathematical tensors of
order 2 or more.

2.6.1.4 Scalar Fields

A scalar field is univariate, with a single value attribute at each
point in space. One example of a 3D scalar field is the time-varying
medical scan above; another is the temperature in a room at each
point in 3D space. The geometric intuition is that each point in
a scalar field has a single value. A point in space can have sev-
eral different numbers associated with it; if there is no underlying
connection between them then they are simply multiple separate
scalar fields.

2.6.1.5 Vector Fields

A vector field is multivariate, with a list of multiple attribute values
at each point. The geometric intuition is that each point in a vector

5It’s also possible for a spatial field to have just one key.

38 2. What: Data Abstraction

field has a direction and magnitude, like an arrow that can point in
any direction and that can be any length. The length might mean
the speed of a motion or the strength of a force. A concrete example
of a 3D vector field is the velocity of air in the room at a specific time
point, where there is a direction and speed for each item. The di-
mensionality of the field determines the number of components in
the direction vector; its length can be computed directly from these
components, using the standard Euclidean distance formula. The
standard cases are two, three, or four components, as above.

2.6.1.6 Tensor Fields

A tensor field has an array of attributes at each point, representing
a more complex multivariate mathematical structure than the list
of numbers in a vector. A physical example is stress, which in the
case of a 3D field can be defined by nine numbers that represent
forces acting in three orthogonal directions. The geometric intution
is that the full information at each point in a tensor field cannot be
represented by just an arrow and would require a more complex
shape such as an ellipsoid.

2.6.1.7 Field Semantics

This categorization of spatial fields requires knowledge of the at-
tribute semantics and cannot be determined from type informa-
tion alone. If you are given a field with multiple measured values
at each point and no further information, there is no sure way to
know its structure. For example, nine values could represent many
things: nine separate scalar fields, or a mix of multiple vector fields
and scalar fields, or a single tensor field.

2.6.2 Temporal Semantics
A temporal attribute is simply any kind of information that re-
lates to time. Data about time is complicated to handle because
of the rich hierarchical structure that we use to reason about time,
and the potential for periodic structure. The time hierarchy is
deeply multiscale: the scale of interest could range anywhere from
nanoseconds to hours to decades to millennia. Even the common
words time and date are a way to partially specify the scale of tem-
poral interest. Temporal analysis tasks often involve finding or ver-
ifying periodicity either at a predetermined scale or at some scale
not known in advance. Moreover, the temporal scales of interest
do not all fit into a strict hierarchy; for instance, weeks do not fit

2.6. Semantics 39

cleanly into months. Thus, the generic vis problems of transforma-
tion and aggregation are often particularly complex when dealing
with temporal data. One important idea is that even though the

" Section 3.4.2.3 intro-
duces the problem of
data transformation. Sec-
tion 13.4 discusses the
question of aggregation in
detail.

dataset semantics involves change over time, there are many ap-
proaches to visually encoding that data—and only one of them is
to show it changing over time in the form of an animation.

" Vision versus memory is
discussed further in Sec-
tion 6.5.

Temporal attributes can have either value or key semantics. Ex-
amples of temporal attributes with dependent value semantics are
a duration of elapsed time or the date on which a transaction oc-
curred. In both spatial fields and abstract tables, time can be an
independent key. For example, a time-varying medical scan can
have the independent keys of x, y, z, t to cover spatial position and
time, with the dependent value attribute of density for each com-
bination of four indices to look up position and time. A temporal
key attribute is usually considered to have a quantitative type, al-
though it’s possible to consider it as ordinal data if the duration
between events is not interesting.

2.6.2.1 Time-Varying Data

A dataset has time-varying semantics when time is one of the key
attributes, as opposed to when the temporal attribute is a value
rather than a key. As with other decisions about semantics, the
question of whether time has key or value semantics requires ex-
ternal knowledge about the nature of the dataset and cannot be
made purely from type information. An example of a dataset with
time-varying semantics is one created with a sensor network that
tracks the location of each animal within a herd by taking new
measurements every second. Each animal will have new location
data at every time point, so the temporal attribute is an indepen-
dent key and is likely to be a central aspect of understanding the
dataset. In contrast, a horse-racing dataset covering a year’s worth
of races could have temporal value attributes such as the race start
time and the duration of each horse’s run. These attributes do in-
deed deal with temporal information, but the dataset is not time-
varying.

A common case of temporal data occurs in a time-series dataset,
namely, an ordered sequence of time–value pairs. These datasets
are a special case of tables, where time is the key. These time-
value pairs are often but not always spaced at uniform temporal
intervals. Typical time-series analysis tasks involve finding trends,
correlations, and variations at multiple time scales such as hourly,
daily, weekly, and seasonal.

40 2. What: Data Abstraction

The word dynamic is often used ambiguously to mean one of
two very different things. Some use it to mean a dataset has time-
varying semantics, in contrast to a dataset where time is not a key
attribute, as discussed here. Others use it to mean a dataset has
stream type, in contrast to an unchanging file that can be loaded
all at once. In this latter sense, items and attributes can be added

" The dataset types of dy-
namic streams versus static
files are discussed in Sec-
tion 2.4.6.

or deleted and their values may change during a running session
of a vis tool. I carefully distinguish between these two meanings
here.

2.7 Further Reading
The Big Picture The framework presented here was inspired in part

by the many taxonomies of data that have been previously
proposed, including the synthesis chapter at the beginning of
an early collection of infovis readings [Card et al. 99], a tax-
onomy that emphasizes the division between continuous and
discrete data [Tory and Möller 04a], and one that emphasizes
both data and tasks [Shneiderman 96].

Field Datasets Several books discuss the spatial field dataset type
in far more detail, including two textbooks [Telea 07, Ward
et al. 10], a voluminous handbook [Hansen and Johnson 05],
and the vtk book [Schroeder et al. 06].

Attribute Types The attribute types of categorical, ordered, and quan-
titative were proposed in the seminal work on scales of mea-
surement from the psychophysics literature [Stevens 46].
Scales of measurement are also discussed extensively in the
book The Grammar of Graphics [Wilkinson 05] and are used
as the foundational axes of an influential vis design space
taxonomy [Card and Mackinlay 97].

Key and Value Semantics The Polaris vis system, which has been com-
mercialized as Tableau, is built around the distinction be-
tween key attributes (independent dimensions) and value at-
tributes (dependent measures) [Stolte et al. 02].

Temporal Semantics A good resource for time-oriented data vis
is a recent book, Visualization of Time-Oriented Data [Aigner
et al. 11].

This page intentionally left blankThis page intentionally left blank

Trends

Actions

Analyze

Search

Query

Why?

All Data

Outliers Features

Attributes

One Many
Distribution Dependency Correlation Similarity

Network Data

Spatial Data
Shape

Topology

Paths

Extremes

Consume
Present EnjoyDiscover

Produce
Annotate Record Derive

Identify Compare Summarize

tag

Target known Target unknown

Location
known
Location
unknown

Lookup

Locate

Browse

Explore

Targets

Why?

How?

What?

Figure 3.1. Why people are using vis in terms of actions and targets.

Why: Task Abstraction

Chapter 3

3.1 The Big Picture
Figure 3.1 breaks down into actions and targets the reasons why
a vis tool is being used. The highest-level actions are to use vis
to consume or produce information. The cases for consuming are
to present, to discover, and to enjoy; discovery may involve gen-
erating or verifying a hypothesis. At the middle level, search can
be classified according to whether the identity and location of tar-
gets are known or not: both are known with lookup, the target is
known but its location is not for locate, the location is known but
the target is not for browse, and neither the target nor the location
are known for explore. At the low level, queries can have three
scopes: identify one target, compare some targets, and summarize
all targets. Targets for all kinds of data are finding trends and out-
liers. For one attribute, the target can be one value, the extremes
of minimum and maximum values, or the distribution of all values
across the entire attribute. For multiple attributes, the target can
be dependencies, correlations, or similarities between them. The
target with network data can be topology in general or paths in
particular, and with spatial data the target can be shape.

3.2 Why Analyze Tasks Abstractly?

This framework encourages you to consider tasks in abstract form,
rather than the domain-specific way that users typically think
about them.

Transforming task descriptions from domain-specific language
into abstract form allows you to reason about similarities and dif-
ferences between them. Otherwise, it’s hard to make useful com-
parisons between domain situations, because if you don’t do this
kind of translation then everything just appears to be different.
That apparent difference is misleading: there are a lot of similar-

43

44 3. Why: Task Abstraction

ities in what people want to do once you strip away the surface
language differences.

For example, an epidimiologist studying the spread of a new
strain of influenza might initially describe her task as “contrast
the prognosis of patients who were intubated in the ICU more
than one month after exposure to patients hospitalized within the
first week”, while a biologist studying immune system response
might use language such as “see if the results for the tissue sam-
ples treated with LL-37 match up with the ones without the pep-
tide”. Even if you know what all the specialized vocabulary means,
it’s still hard to think about what these two descriptions have in
common because they’re using different words: “contrast” versus
“match up”. If you transform these into descriptions using a con-
sistent set of generic terms, then you can spot that these two tasks
are just two instances of the same thing: “compare values between
two groups”.

The analysis framework has a small set of carefully chosen
words to describe why people are using vis, designed to help you
crisply and concisely distinguish between different goals. This set
has verbs describing actions, and nouns describing targets. It’s
possible that you might decide to use additional terms to com-
pletely and precisely describe the user’s goals; if so, strive to trans-
late domain-specific terms into words that are as generic as possi-
ble.

The same vis tool might be usable for many different goals. It is
often useful to consider only one of the user’s goals at a time, in or-
der to more easily consider the question of how a particular idiom
supports that goal. To describe complex activities, you can specify
a chained sequence of tasks, where the output of one becomes the
input to the next.

Another important reason to analyze the task is to understand
whether and how to transform the user’s original data into different
forms by deriving new data. That is, the task abstraction can and
should guide the data abstraction.

3.3 Who: Designer or User

It’s sometimes useful to augment an analysis instance specifica-
tion by indicating who has a goal or makes a design choice: the
designer of the vis or the end user of the vis. Both cases are com-
mon.

3.4. Actions 45

Vis tools fall somewhere along a continuum from specific to gen-
eral. On the specific side, tools are narrow: the designer has built
many choices into the design of the tool itself in a way that the user
cannot override. These tools are limited in the kinds of data and
tasks that they can address, but their strength is that users are not
faced with an overwhelming array of design choices. On the gen-
eral side, tools are flexible and users have many choices to make.
The breadth of choices is both a strength and a limitation: users
have a lot of power, but they also may make ineffective choices if
they do not have a deep understanding of many vis design issues.

Specialized vis tools are designed for specific contexts with a
narrow range of data configurations, especially those created
through a problem-driven process. These specialized datasets are
often an interesting mix of complex combinations of and special
cases of the basic data types. They also are a mix of original and
derived data. In contrast, general vis tools are designed to handle a
wide range of data in a flexible way, for example, by accepting any
dataset of a particular type as input: tables, or fields, or networks.

" Dataset types are cov-
ered in Section 2.4.

Some particularly broad tools handle multiple dataset types, for in-
stance, supporting transformations between tables and networks.

3.4 Actions

Figure 3.2 shows three levels of actions that define user goals. The
high-level choices describe how the vis is being used to analyze,
either to consume existing data or to also produce additional data.
The mid-level choices cover what kind of search is involved, in
terms of whether the target and location are known or not. The
low-level choices pertain to the kind of query: does the user need
to identify one target, compare some targets, or summarize all of
the targets? The choices at each of these three levels are indepen-
dent from each other, and it’s usually useful to describe actions at
all three of them.

3.4.1 Analyze
At the highest level, the framework distinguishes between two pos-
sible goals of people who want to analyze data using a vis tool:
users might want only to consume existing information or also to
actively produce new information.

The most common use case for vis is for the user to consume
information that has already been generated as data stored in a

46 3. Why: Task Abstraction

Analyze

Search

Query

Consume
Present EnjoyDiscover

Produce
Annotate Record Derive

Identify Compare Summarize

tag

Target known Target unknown

Location
known

Location
unknown

Lookup

Locate

Browse

Explore

Actions

Figure 3.2. Three levels of actions: analyze, search, and query.

format amenable to computation. The framework has three fur-
ther distinctions within that case: whether the goal is to present
something that the user already understands to a third party, or
for the user to discover something new or analyze information that

3.4. Actions 47

is not already completely understood, or for users to enjoy a vis to
indulge their casual interests in a topic.

3.4.1.1 Discover

The discover goal refers to using vis to find new knowledge that was
not previously known. Discovery may arise from the serendipitous
observation of unexpected phenomena, but investigation may be
motivated by existing theories, models, hypotheses, or hunches.
This usage includes the goal of finding completely new things; that
is, the outcome is to generate a new hypothesis. It also includes
the goal of figuring out whether a conjecture is true or false; that
is, to verify—or disconfirm—an existing hypothesis.

While vis for discovery is often associated with modes of sci-
entific inquiry, it is not restricted to domain situations that are
formally considered branches of science. The discover goal is often
discussed as the classic motivation for sophisticated interactive id-
ioms, because the vis designer doesn’t know in advance what the
user will need to see.⋆ The fundamental motivation of this analysis

⋆ This distinction between
the goals of presentation of
the known and discovery of
the unknown is very com-
mon in the vis literature, but
other sources may use dif-
ferent terms, such as ex-
plain versus explore.

framework is to help you separate out the questions of why the vis
is being used from how the vis idiom is designed to achieve those
goals, so I will repeatedly emphasize that why doesn’t dictate how.

3.4.1.2 Present

The present goal refers to the use of vis for the succinct commu-
nication of information, for telling a story with data, or guiding
an audience through a series of cognitive operations. Presenta-
tion using vis may take place within the context of decision mak-
ing, planning, forecasting, and instructional processes. The crucial
point about the present goal is that vis is being used by somebody
to communicate something specific and already understood to an
audience.

Presentation may involve collaborative or pedagogical contexts,
and the means by which a presentation is given may vary accord-
ing to the size of the audience, whether the presentation is live or
prerecorded, and whether the audience is in the same place as the
presenter. One classic example of a present vis is static informa-
tion graphics, such as a diagram in a newspaper or an image in
a blog. However, the present goal is not intrinsically limited to a
static visual encoding idiom; it’s very possible to pursue this goal
with dynamic vis idioms that include interaction and animation.
Once again, the decision about why is separable from how the id-

48 3. Why: Task Abstraction

iom is designed: presentation can be supported through a wide
variety of idiom design choices.

A crucial aspect of presentation is that the knowledge commu-
nicated is already known to the presenter in advance. Sometimes
the presenter knows it before using vis at all and uses the vis only
for communication. In other cases, the knowledge arose from the
presenter’s previous use of vis with the goal of discovery, and it’s
useful to think about a chained sequence of tasks where the output
of a discover session becomes the input to a present session.

3.4.1.3 Enjoy

The enjoy goal refers to casual encounters with vis. In these con-
texts, the user is not driven by a previously pressing need to verify
or generate a hypothesis but by curiosity that might be both stim-
ulated and satisfied by the vis. Casual encounters with vis for
enjoyment can be fleeting, such as when looking at an infographic
while reading a blog post. However, users can become sufficiently
engaged with an enjoyable vis tool that they use it intensively for a
more extended period of time.

One aspect of this classification that’s tricky is that the goals
of the eventual vis user might not be a match with the user goals
conjectured by the vis designer. For example, a vis tool may have
been intended by the designer for the goal of discovery with a par-
ticular audience, but it might be used for pure enjoyment by a
different group of people. In the analyses presented in this book
I’ll assume that these goals are aligned, but in your own experience
as a designer you might need to consider how they might diverge.

Figure 3.3 shows the Name Voyager, which was created for ex-
pectant parents deciding what to name their new baby. When the
user types characters of a name, the vis shows data for the popu-
larity of names in the United States since 1900 that start with that
sequence of characters. The tool uses the visual encoding idiom
where each name has a stripe whose height corresponds to popu-
larity at a given time. Currently popular names are brighter, and
gender is encoded by color. The Name Voyager appealed to many
people with no interest in having children, who analyzed many dif-
ferent historical trends and posted extensively about their findings
in their personal blogs, motivated by their own enjoyment rather
than a pressing need [Wattenberg 05].

3.4. Actions 49

Figure 3.3. Name Voyager, a vis tool originally intended for parents focused deciding on what to name their expected
baby, ended up being used by many nonparents to analyze historical trends for their own enjoyment. Left: Names
starting with ‘O’ had a notable dip in popularity in the middle of the century. Right: Names starting with ‘LAT’ show
a trend of the 1970s. After [Wattenberg 05, Figures 2 and 3], using http://www.babynamewizard.com.

3.4.2 Produce
In contrast to using vis only for consuming existing information, in
the produce case the intent of the user is to generate new material.
Often the goal with produce is to produce output that is used im-
mediately, as input to a next instance. Sometimes the user intends
to use this new material for some other vis-related task later on,
such as discovery or presentation. Sometimes the intended use of
the new material is for some other purpose that does not require
vis, such as downstream analysis using nonvisual tools. There are
three kinds of produce goals: annotate, record, and derive.

3.4.2.1 Annotate

The annotate goal refers to the addition of graphical or textual an-
notations associated with one or more preexisting visualization el-
ements, typically as a manual action by the user. When an annota-
tion is associated with data items, the annotation could be thought
of as a new attribute for them. For example, the user could anno-

" Attributes are covered in
Chapter 2.

tate all of the points within a cluster with a text label.

3.4.2.2 Record

The record goal saves or captures visualization elements as persis-
tent artifacts. These artifacts include screen shots, lists of book-

50 3. Why: Task Abstraction

Figure 3.4. Graphical history recorded during an analysis session with Tableau. From [Heer et al. 08, Figure 1].

marked elements or locations, parameter settings, interaction logs,
or annotations. The record choice saves a persistent artifact, in
contrast to the annotate, which attaches information temporarily
to existing elements; an annotation made by a user can subse-
quently be recorded. One interesting example of a record goal is
to assemble a graphical history, in which the output of each task
includes a static snapshot of the view showing its current state,
and these snapshots accumulate in a branching meta-visualization
showing what occurred during the user’s entire session of using
the vis tool. Figure 3.4 shows an example from the Tableau vis
tool [Heer et al. 08]. Recording and retaining artifacts such as these
are often desirable for maintaining a sense of analytical prove-
nance, allowing users to revisit earlier states or parameter settings.

3.4.2.3 Derive

The derive goal is to produce new data elements based on existing
data elements. New attributes can be derived from information
contained within existing ones, or data can be transformed from
one type into another. Deriving new data is a critical part of the vis
design process. The common case is that deriving new data is a
choice made by vis designers, but this choice could also be driven
by a user of a vis tool.

When you are faced with a dataset, you should always consider
whether to simply use it as is, or to transform it to another form:
you could create newly derived attributes from the original ones, or
even transform the dataset from the original type to another one.

There is a strong relationship between the form of the data—
the attribute and dataset types—and what kinds of vis idioms are

3.4. Actions 51

effective at displaying it. The good news is that your hands are
not tied as a designer because you can transform the data into a
form more useful for the task at hand. Don’t just draw what you’re
given; decide what the right thing to show is, create it with a series
of transformations from the original dataset, and draw that!

The ability to derive new data is why the data abstraction used
in a vis tool is an active choice on the part of the designer, rather
than simply being dictated by what the user provides. Changing
the dataset to another form by deriving new attributes and types
greatly expands the design space of possible vis idioms that you
can use to display it. The final data abstraction that you choose
might simply be the dataset in its original form, but more complex
data abstractions based on deriving new attributes and types are
frequently necessary if you’re designing a vis tool for a complex,
real-world use case. Similarly, when you consider the design of
an existing vis system, understanding how the original designer
chose to transform the given dataset should be a cornerstone of
your analysis.

A dataset often needs to be transformed beyond its original state
in order to create a visual encoding that can solve the desired prob-
lem. To do so, we can create derived attributes that extend the
dataset beyond the original set of attributes that it contains.⋆ ⋆ A synonym for derive is

transform.In some cases, the derived attribute encodes the same data as
the original, but with a change of type. For example, a dataset
might have an original attribute that is quantitative data: for in-
stance, floating point numbers that represent temperature. For
some tasks, like finding anomalies in local weather patterns, that
raw data might be used directly. For another task, like deciding
whether water is an appropriate temperature for a shower, that
quantitative attribute might be transformed into a new derived at-
tribute that is ordered: hot, warm, or cold. In this transformation,
most of the detail is aggregated away. In a third example, when
making toast, an even more lossy transformation into a binary cat-
egorical attribute might suffice: burned or not burned.

In other cases, creating the derived attribute requires access
to additional information. For a geographic example, a categorical
attribute of city name could be transformed into two derived quan-
titative attributes containing the latitude and longitude of the city.
This transformation could be accomplished through a lookup to a
separate, external database.

A new derived attribute may be created using arithmetic, log-
ical, or statistical operations ranging from simple to complex. A
common simple operation is subtracting two quantitative attributes

52 3. Why: Task Abstraction

Original Data

exports

imports

(a)

Derived Data

trade balance = exports − imports

trade
balance

(b)

Figure 3.5. Derived attributes can be directly visually encoded. (a) Two original
data attributes are plotted, imports and exports. (b) The quantitative derived at-
tribute of trade balance, the difference between the two originals, can be plotted
directly.

to create a new quantitative difference attribute, which can then be
directly visually encoded. Figure 3.5 shows an example of encod-
ing two attributes directly, versus encoding the derived variable of
the difference between them. For tasks that require understanding
this difference, Figure 3.5(b) is preferable because it encodes the
difference directly. The user can interpret the information by judg-
ing position along a common frame. In contrast, in Figure 3.5(a)
the user must judge the difference in heights between the two orig-
inal curves at each step, a perceptual operation that is more diffi-
cult and demanding. This operation is simple because it is local-
ized to a pair of attribute values; a more complex operation would
require global computations across all values for an attribute, such
as averaging for a single attribute or the correlation between two of
them.

Datasets can be transformed into new ones of a different type,
just as new attributes can be derived from existing ones. The
full process of creating derived data may involve multiple stages
of transformation.

For example, the VxInsight system transforms a table of ge-
nomics data into a network through a multistage derivation pro-
cess by first creating a quantitative derived attribute of similarity,
and then creating a derived network with links only between the
most similar items [Davidson et al. 01]. The table had 6000 rows
of yeast genes, and 18 columns containing measurements of the
gene activity level in a specific experimental condition. The values
in the columns were used to derive a new attribute, the similar-

3.4. Actions 53

ity score, defined between each pair of genes. The similarity score
was computed using sophisticated statistical processing to be ro-
bust in the presence of nonlinear and noisy data, as occurs in this
sort of biological application. This derived attribute was then used
to create a derived network, where the nodes in the network were
genes. A link was established between two genes when the simi-
larity score was high; specifically, links were created only for the
top 20 similarity scores.

3.4.3 Search
All of the high-level analyze cases require the user to search for
elements of interest within the vis as a mid-level goal.⋆ The classi- ⋆ The verb find is often

used as a synonym in de-
scriptions of search tasks,
implying a successful out-
come.

fication of search into four alternatives is broken down according
to whether the identity and location of the search target is already
known or not.

3.4.3.1 Lookup

If users already know both what they’re looking for and where it
is, then the search type is simply lookup. For example, a user
of a tree vis showing the ancestral relationships between mammal
species might want to look up humans, and can get to the right
spot quickly by remembering how humans are classified: they’re
in the group that has live young rather than laying eggs like a
platypus or having a pouch like kangaroos, and within that group
humans fall into the category of primates.

3.4.3.2 Locate

To find a known target at an unknown location, the search type is
locate: that is, find out where the specific object is. In a similar
example, the same user might not know where to find rabbits, and
would have to look around in a number of places before locating
them as lagomorphs (not rodents)!

3.4.3.3 Browse

In contrast, the exact identity of a search target might not be
known in advance; rather, it might be specified based on char-
acteristics. In this case, users are searching for one or more items
that fit some kind of specification, such as matching up with a
particular range of attribute values. When users don’t know ex-
actly what they’re looking for, but they do have a location in mind

54 3. Why: Task Abstraction

of where to look for it, the search type is browse. For instance,
if a user of a tree vis is searching within a particular subtree for
leaf nodes having few siblings, it would be an instance of browse
because the location is known in advance, even though the exact
identity of the search target isn’t. Another example of browsing is a
user of a vis tool with the visual encoding idiom of a line graph dis-
playing the share price of multiple companies over the past month,
who examines the share price of each line on June 15.

3.4.3.4 Explore

When users are not even sure of the location, the search type is
explore. It entails searching for characteristics without regard to
their location, often beginning from an overview of everything. Ex-
amples include searching for outliers in a scatterplot, for anoma-
lous spikes or periodic patterns in a line graph of time-series data,
or for unanticipated spatially dependent patterns in a choropleth
map.

3.4.4 Query
Once a target or set of targets for a search has been found, a low-
level user goal is to query these targets at one of three scopes:
identify, compare, or summarize. The progression of these three
corresponds to an increase in the amount of search targets under
consideration: one, some, or all. That is, identify refers to a single
target, compare refers to multiple targets, and summarize refers to
the full set of possible targets.

For a concrete example, consider different uses of a choropleth
map of US election results, where each state is color-coded by the
party that won. A user can identify the election results for one
state, compare the election results of one state to another, or sum-
marize the election results across all states to determine how many
favored one candidate or the other or to determine the overall dis-
tribution of margin of victory values.

3.4.4.1 Identify

The scope of identify is a single target. If a search returns known
targets, either by lookup or locate, then identify returns their char-
acteristics. For example, a user of a static map that represents
US election results by color coding each state red or blue, with the
saturation level of either hue showing the proportion, can identify

3.5. Targets 55

the winning party and margin of victory for the state of California.
Conversely, if a search returns targets matching particular charac-
teristics, either by browse or explore, then identify returns specific
references. For instance, the election map user can identify the
state having the highest margin of victory.

3.4.4.2 Compare

The scope of compare is multiple targets. Comparison tasks are
typically more difficult than identify tasks and require more so-
phisticated idioms to support the user. For example, the capability
of inspecting a single target in detail is often necessary, but not
sufficient, for comparison.

3.4.4.3 Summarize

The scope of summarize task is all possible targets. A synonym for
summarize is overview, a term is frequently used in the vis liter-
ature both as a verb, where it means to provide a comprehensive
view of everything, and as a noun, where it means a summary dis-
play of everything. The goal of providing an overview is extremely
common in visualization.

" Section 6.7 discusses the
question of how and when
to provide overviews.

3.5 Targets

Figure 3.6 shows four kinds of abstract targets. The actions dis-
cussed above refer to a target, meaning some aspect of the data
that is of interest to the user. Targets are nouns, whereas actions
are verbs. The idea of a target is explicit with search and query
actions. It is more implicit with the use actions, but still relevant:
for example, the thing that the user presents or discovers.

Three high-level targets are very broadly relevant, for all kinds
of data: trends, outliers, and features. A trend is a high-level char-
acterization of a pattern in the data.⋆ Simple examples of trends in-

⋆ Indeed, a synonym for
trend is simply pattern.

clude increases, decreases, peaks, troughs, and plateaus. Almost
inevitably, some data doesn’t fit well with that backdrop; those el-
ements are the outliers.⋆ The exact definition of features is task

⋆ There are many other
synonyms for outliers, in-
cluding anomalies, novel-
ties, deviants, and sur-
prises.

dependent, meaning any particular structures of interest.
Attributes are specific properties that are visually encoded. The

" Attributes are discussed
in detail in Chapter 2.

lowest-level target for an attribute is to find an individual value.
Another frequent target of interest is to find the extremes: the
minimum or maximum value across the range. A very common

56 3. Why: Task Abstraction

Trends

All Data

Outliers Features

Attributes

One Many

Distribution Dependency Correlation Similarity

Network Data

Spatial Data

Shape

Topology

Paths

Extremes

Targets

Figure 3.6. The goals of the user might be to find or understand specific aspects
of the data: trends and outliers for all kinds of data; individual values, the minimum
or maximum extremes of the range, or the entire distribution of a single attribute; or
the dependencies, correlations, or similarities between multiple attributes; topology
or paths for network data, and shape for spatial data.

3.6. How: A Preview 57

target that has high-level scope is the distribution of all values for
an attribute.

Some targets encompass the scope of multiple attributes: de-
pendencies, correlations, and similarities between attributes. A first
attribute can have a dependency on a second, where the values for
the first directly depend on those of the second. There is a correla-
tion between one attribute and another if there is a tendency for the
values of second to be tied to those of the first. The similarity be-
tween two attributes can be defined as a quantitative measurement
calculated on all of their values, allowing attributes to be ranked
with respect to how similar, or different, they are from each other.

The abstract tasks of understanding trends, outliers, distribu-
tions, and correlations are extremely common reasons to use vis.
Each of them can be expressed in very diverse terms using domain-
specific language, but you should be on the lookout to recognize
these abstractions.

Some targets pertain to specific types of datasets. Network data
specifies relationships between nodes as links. The fundamental
target with network data is to understand the structure of these
interconnections; that is, the network’s topology. A more specific
topological target is a path of one or more links that connects two
nodes. For spatial data, understanding and comparing the geo-

" The network datatype is
covered in Section 2.4.2,
and choices for how ar-
range networks are covered
in Chapter 9.

metric shape is the common target of user actions.
" Section 2.4.3.1 covers
the dataset type of spa-
tial fields, and Section 2.4.4
covers geometry. Choices
for arranging spatial data
are covered in Chapter 8.

3.6 How: A Preview

The third part of an analysis instance trio is how a vis idiom can
be constructed out of a set of design choices. Figure 3.7 provides
a preview of these choices, with a high-level breakdown into four
major classes.

The family of how to encode data within a view has five choices
for how to arrange data spatially: express values; separate, order,
and align regions; and use given spatial data. This family also in-
cludes how to map data with all of the nonspatial visual channels
including color, size, angle, shape, and many more. The manipu-
late family has the choices of change any aspect of the view, select
elements from within the view, and navigate to change the view-
point within the view—an aspect of change with a rich enough set
of choices to merit its own category. The family of how to facet
data between views has choices for how to juxtapose and coordi-
nate multiple views, how to partition data between views, and how
to superimpose layers on top of each other. The family of how to

58 3. Why: Task Abstraction

How?

Encode Manipulate Facet Reduce

Arrange

Map

Change

Select

Navigate

Express Separate

Order Align

Use

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

Color

Motion

Size, Angle, Curvature, ...

Hue Saturation Luminance

Shape

Direction, Rate, Frequency, ...

from categorical and ordered
attributes

Why?

How?

What?

Figure 3.7. How to design vis idioms: encode, manipulate, facet, and reduce.

reduce the data shown has the options of filter data away, aggre-
gate many data elements together, and embed focus and context
information together within a single view.

The rest of this book defines, describes, and discusses these
choices in depth.

3.7. Analyzing and Deriving: Examples 59

3.7 Analyzing and Deriving: Examples

The three analysis and derivation examples below give a taste of
how this what–why–how framework can be used right away. The
first example covers comparative analysis between two vis tools.
The second example discusses deriving a single attribute, an im-
portance measure for trees to decide which branches to show to
summarize its topological structure. The third example covers de-
riving many new attributes and augmenting a spatial fluid dynam-
ics dataset by creating derived spaces in which features of interest
are easy to find.

3.7.1 Comparing Two Idioms
The what–why–how analysis framework is useful for comparative
analysis, for example, to examine two different vis tools that have
different answers for the question of how the idiom is designed
when used for exactly the same context of why and what at the
abstraction level.

SpaceTree [Plaisant et al. 02], shown in Figure 3.8(a), and Tree-
Juxtaposer [Munzner et al. 03], shown in Figure 3.8(b), are tree vis

(a) (b)

Figure 3.8. Comparing two idioms. (a) SpaceTree [Plaisant et al. 02]. (b) TreeJuxtaposer. From http://www.cs.umd.
edu/hcil/spacetree and [Munzner et al. 03, Figure 1].

60 3. Why: Task Abstraction

Present Locate Identify

Path between two nodes

Actions

Targets

SpaceTree

TreeJuxtaposer

Encode Navigate Select Filter Aggregate
Tree

Arrange

Why? What? How?

Encode Navigate Select

Figure 3.9. Analyzing what–why–how comparatively for the SpaceTree and TreeJuxtaposer idioms.

tools that use somewhat different idioms. What these tools take as
input data is the same: a large tree composed of nodes and links.
Why these tools are being used is for the same goal in this sce-
nario: to present a path traced between two nodes of interest to a
colleague. In more detail, both tools can be used to locate paths
between nodes and identify them.

Some aspects of idioms are the same: both systems allow the
user to navigate and to select a path, with the result that it’s en-
coded differently from the nonselected paths through highlighting.
The systems differ in how elements of the visualization are ma-
nipulated and arranged. SpaceTree ties the act of selection to a
change of what is shown by automatically aggregating and filtering
the unselected items. In contrast, TreeJuxtaposer allows the user
to arrange areas of the tree to ensure visibility for areas of interest.
Figure 3.9 summarizes this what–why–how analyis.

3.7.2 Deriving One Attribute
In a vis showing a complex network or tree, it is useful to be able to
filter out most of the complexity by drawing a simpler picture that
communicates the key aspects of its topological structure. One
way to support this kind of summarization is to calculate a new
derived attribute that measures the importance of each node in
the graph and filter based on that attribute. Many different ap-
proaches to calculating importance have been proposed; centrality
metrics do so in a way that takes into account network topology.
The Strahler number is a measure of node importance originally

3.7. Analyzing and Deriving: Examples 61

(a) (b)

Figure 3.10. The derived quantitative attribute of Strahler numbers is used to filter
the tree in order to create a recognizable summary. (a) The important skeleton of
a large tree is visible when only 5000 of the highest-ranked nodes are drawn. (b)
The full tree has over a half million nodes. From [Auber 02, Figures 10 and 13].

developed in hydrogeology to characterize the branching structure
of rivers that has been adapted and extended for use visualizing
trees and networks [Auber 02]. Very central nodes have large
Strahler numbers, whereas peripheral nodes have low values. The
Strahler number is an example of a derived attribute for network
data that is the result of a complex and global computation, rather
than simply a local calculation on a small neighborhood around a
node.

Figure 3.10 shows an example of filtering according to the Strah-
ler derived attribute to summarize a tree effectively. The result of
drawing only the top-ranked 5000 nodes and the links that con-
nect them is a recognizable skeleton of the full tree, shown in
Figure 3.10(a), while over a half million nodes are shown in Fig-
ure 3.10(b). In contrast, if the 5000 nodes to draw were picked ran-
domly, the structure would not be understandable. Both versions
of the network are also colored according to the Strahler number,
to show how the centrality measure varies within the network.

To summarize this example concisely in terms of a what–why–
how analysis, as shown in Figure 3.11, a new quantitative attribute
is derived and used to filter away the peripheral parts of a tree, in
support of the task of summarizing the tree’s overall topology. As in
the previous example, the tree is encoded as a node–link diagram,
the most common choice for tree and network arrangment.

62 3. Why: Task Abstraction

Task 1

.58

.54

.64

.84

.24

.74

.64
.84

.84

.94

.74

Out
Quantitative
attribute on nodes

.58

.54

.64

.84

.24

.74

.64
.84

.84

.94

.74

In
Quantitative
attribute on nodes

Task 2

Derive

Why?What?

In Tree ReduceSummarize

How?Why?What?

In Quantitative attribute on nodes Topology
In Tree

Filter

In
Tree

Out
Filtered tree
Removed
unimportant parts

In
Tree +

Out Quantitative
attribute on nodes Out Filtered tree

Figure 3.11. Analyzing a chained sequence of two instances where an attribute is derived in order to summarize a
tree by filtering away the unimportant parts.

3.7.3 Deriving Many New Attributes

Data transformations can shed light into spatial data as well. In an
example from computational fluid dynamics, linked derived spaces
are used for feature detection [Henze 98]. The vis system shown
in Figure 3.12 allows the user to quickly create plots of any two
original or derived variables from the palette of variables shown
in the upper left derived fields pane. The views are linked together
with color highlighting. The power of this idiom lies in seeing where
regions that are contiguous in one view fall in the other views.

" Multiple views are dis-
cussed further in Chap-
ter 12.

The original dataset is a time-varying spatial field with measure-
ments along a curvilinear mesh fitted to an airfoil. The plot in the
physical space pane on the upper right of Figure 3.12 shows the
data in this physical space, using the two spatial field variables.
Undisturbed airflow enters the physical space from the left, and
the back tip of the airfoil is on the right. Two important regions
in back of the airfoil are distinguished with color: a red recircula-
tion region and a yellow wake region. While these regions are not
easy to distinguish in this physical view, they can be understood
and selected more easily by interaction with the four other derived
views. For example, in the derived space of vorticity vs enthalpy in
the upper middle of Figure 3.12, the recirculation zone is distin-
guishable as a coherent spatial structure at the top, with the yellow
wake also distinguishable beneath it. As the white box shows, the

3.7. Analyzing and Deriving: Examples 63

Figure 3.12. Computational fluid dynamics vis showing the list of many derived attributes (top left), one view of
the original spatial field (top right), and four other views showing pairs of selected derived attributes. The multiple
juxtaposed views are coordinated with shared colored highlights. From [Henze 98, Figure 5].

recirculation zone can easily be selected in this view. The pressure
vs temperature pane in the bottom middle of Figure 3.12 shows an-
other derived space made by plotting the pressure versus the tem-
perature. In this view, the red recirculation zone and the yellow
wake appear where both the pressure and temperature variables
are high, in the upper right. Without getting into the exact tech-
nical meaning of the derived variables as used in fluid dynamics
(vorticity, entropy, enthalpy, and so on), the point of this example
is that many structures of interest in fluid dynamics can be seen
more easily from layouts in the derived spaces.

64 3. Why: Task Abstraction

Task 1

Out
Many quantitative
attributes

In
Many quantitative
attributes

Task 2

Derive

Why?What?
In Spatial field

How?Why?What?

In Many quantitative
attributes

Features

In Spatial field

In
Spatial field

Out
Juxtaposed attribute plots with
linked coloring

In
Spatial field

Actions

Targets

Discover
Explore
Browse
Identify
Compare

Facet Manipulate

Map Arrange
ExpressHue

Juxtapose
Partition

Select
Navigate

Out Many
quantitative
attributes Out Juxtaposed

attribute plots with
linked coloring

+

Figure 3.13. Analyzing a chained sequence, where many attributes are derived and visually encoded.

To summarize this example in terms of a what–why–how analy-
sis, as shown in Figure 3.13, many new quantitative attributes are
derived from an original spatial field dataset. Each pair of them
is visually encoded into a view, as is the original spatial data, and
the multiple juxtaposed views are coordinated with shared color
coding and highlighting.

3.8 Further Reading

The Big Picture An earlier version of the what–why–how framework
was first presented as a paper [Brehmer and Munzner 13],
which includes a very detailed discussion of its relationship
to the extensive previous work in classifications of tasks and
interaction idioms. That discussion covers 30 previous clas-
sifications and 20 relevant references, ranging from a charac-
terization of the scientific data analysis process [Springmeyer
et al. 92], to an influential low-level task classification [Amar
et al. 05], to a taxonomy of tasks for network datasets [Lee
et al. 06], to a recent taxonomy of interaction dynamics [Heer
and Shneiderman 12].

3.8. Further Reading 65

Who: Designers versus Users Some of the challenges inherent in bridg-
ing the gaps between vis designers and users are discussed
in an influential paper [van Wijk 06].

Derive Many vis pipeline models discuss the idea of data trans-
formation as a critical early step [Card et al. 99, Chi and
Riedl 98], and others also point out the need to transform be-
tween different attribute types [Velleman and Wilkinson 93].
A later taxonomy of vis explicitly discusses the idea that data
types can change as the result of the transformation [Tory
and Möller 04b].

Examples The analysis examples are SpaceTree [Plaisant et al. 02],
TreeJuxtaposer [Munzner et al. 03], Strahler numbers for tree
simplification [Auber 02], and linked derived spaces for fea-
ture detection [Henze 98].

Domain situation
Observe target users using existing tools

Visual encoding/interaction idiom
Justify design with respect to alternatives

Algorithm
Measure system time/memory
Analyze computational complexity

Observe target users after deployment ()

Measure adoption

Analyze results qualitatively
Measure human time with lab experiment (lab study)

Data/task abstraction

Figure 4.1. The four nested levels of vis design have different threats to validity at each level, and validation
approaches should be chosen accordingly.

Analysis: Four Levels for Validation

Chapter 4

4.1 The Big Picture

Figure 4.1 shows four nested levels of design: domain situation,
task and data abstraction, visual encoding and interaction idiom,
and algorithm. The task and data abstraction level addresses the
why and what questions, and the idiom level addresses the ques-
tion of how. Each of these levels has different threats to validity, so
it’s a good idea to choose your validation method with these levels
in mind.

4.2 Why Validate?

Validation is important for the reasons discussed in Chapter 1: the
vis design space is huge, and most designs are ineffective. In that
chapter, I also discuss the many reasons that validation is a tricky
problem that is difficult to get right. It’s valuable to think about
how you might validate your choices from the very beginning of
the design process, rather than leaving these considerations for
the end as an afterthought.

This chapter introduces two more levels of design to consider,
one above the why–what abstraction level and one below the how
idiom level. While this book focuses on the two middle levels, con-
sidering all four is helpful when thinking about how to validate
whether a given design has succeeded.

4.3 Four Levels of Design

Splitting the complex problem of vis design into four cascading lev-
els provides an analysis framework that lets you address different
concerns separately. Figure 4.2 shows these four levels.

67

68 4. Analysis: Four Levels for Validation

Data/task abstraction

Visual encoding/interaction idiom

Algorithm

Domain situation

Figure 4.2. The four nested levels of vis design.

At the top is the situation level, where you consider the details
of a particular application domain for vis. Next is the what–why
abstraction level, where you map those domain-specific problems
and data into forms that are independent of the domain. The fol-
lowing how level is the design of idioms that specify the approach
to visual encoding and interaction. Finally, the last level is the
design of algorithms to instantiate those idioms computationally.

These levels are nested; the output from an upstream level above
is input to the downstream level below. A block is the outcome of
the design process at that level. The challenge of this nesting is
that choosing the wrong block at an upstream level inevitably cas-
cades to all downstream levels. If you make a poor choice in the
abstraction stage, then even perfect choices at the idiom and algo-
rithm levels will not result in a vis system that solves the intended
problem.

The value of separating these concerns into four levels is that
you can separately analyze the question of whether each level has
been addressed correctly, independently of whatever order design
decisions were made in the process of building the vis tool. Al-
though I encourage you to consider these four levels separately for
analysis, in practice you wouldn’t finalize design decisions at one
level before moving on to the next. Vis design is usually a highly
iterative refinement process, where a better understanding of the

4.3. Four Levels of Design 69

blocks at one level will feed back and forward into refining the
blocks at the other levels. Thus, it is one of many examples of the
principle of design as redesign [Green 89].

4.3.1 Domain Situation
Blocks at this top level describe a specific domain situation, which
encompasses a group of target users, their domain of interest, their
questions, and their data. The term domain is frequently used in
the vis literature to mean a particular field of interest of the target
users of a vis tool, for example microbiology or high-energy physics
or e-commerce. Each domain usually has its own vocabulary for
describing its data and problems, and there is usually some exist-
ing workflow of how the data is used to solve their problems. The
group of target users might be as narrowly defined as a handful
of people working at a specific company, or as broadly defined as
anybody who does scientific research.

One example of a situation block is a computational biologist
working in the field of comparative genomics, using genomic se-
quence data to ask questions about the genetic source of adaptiv-
ity in a species [Meyer et al. 09]. While one kind of situation is a
specific set of users whose questions about their data arise from
their work, situations arise in other contexts. For example, an-
other situation is members of the general public making medical
decisions about their healthcare in the presence of uncertainty [Mi-
callef et al. 12].

At this level, situation blocks are identified: the outcome of
the design process is an understanding that the designer reaches
about the needs of the user. The methods typically used by de-
signers to identify domain situation blocks include interviews, ob-
servations, or careful research about target users within a specific
domain.

Developing a clear understanding of the requirements of a par-
ticular target audience is a tricky problem for a designer.⋆ While ⋆ Working closely with a

specific target audience to
iteratively refine a design
is called user-centered de-
sign or human-centered
design in the human–com-
puter interaction literature.

it might seem obvious to you that it would be a good idea to un-
derstand requirements, it’s a common pitfall for designers to cut
corners by making assumptions rather than actually engaging with
any target users.

In most cases users know they need to somehow view their data,
but they typically cannot directly articulate their analysis needs in
a clear-cut way. Eliciting system requirements is not easy, even
when you have unfettered access to target users fluent in the vo-
cabulary of the domain and immersed in its workflow. Asking

70 4. Analysis: Four Levels for Validation

users to simply introspect about their actions and needs is no-
toriously insufficient: what users say they do when reflecting on
their past behavior gives you an incomplete picture compared with
what they actually do if you observe them.

The outcome of identifying a situation block is a detailed set of
questions asked about or actions carried out by the target users,
about a possibly heterogeneous collection of data that’s also un-
derstood in detail. Two of the questions that may have been asked
by the computational biologist working in comparative genomics
working above were “What are the differences between individual
nucleotides of feature pairs?” and “What is the density of coverage
and where are the gaps across a chromosome?” [Meyer et al. 09].
In contrast, a very general question such as “What is the genetic
basis of disease?” is not specific enough to be useful as input to
the next design level.

4.3.2 Task and Data Abstraction
Design at the next level requires abstracting the specific domain
questions and data from the domain-specific form that they have
at the top level into a generic representation. Abstracting into the
domain-independent vocabulary allows you to realize how domain
situation blocks that are described using very different language
might have similar reasons why the user needs the vis tool and
what data it shows.

Questions from very different domain situations can map to the
same abstract vis tasks. Examples of abstract tasks include brows-
ing, comparing, and summarizing. Task blocks are identified by
the designer as being suitable for a particular domain situation
block, just as the situation blocks themselves are identified at the
level above.

" Chapter 3 covers abstract
tasks in detail.

Abstract data blocks, however, are designed. Selecting a data
block is a creative design step rather than simply an act of identifi-
cation. While in some cases you may decide to use the data in ex-
actly the way that it was identified in the domain situation, you will
often choose to transform the original data from its upstream form
to something quite different. The data abstraction level requires
you to consider whether and how the same dataset provided by a
user should be transformed into another form. Many vis idioms
are specific to a particular data type, such as a table of numbers
where the columns contain quantitative, ordered, or categorical
data; a node–link graph or tree; or a field of values at every point
in space. Your goal is to determine which data type would support

4.3. Four Levels of Design 71

a visual representation of it that addresses the user’s problem. Al-
though sometimes the original form of the dataset is a good match
for a visual encoding that solves the problem, often a transforma-
tion to another data type provides a better solution.

" Chapter 2 covers ab-
stract data types, and Sec-
tion 3.4.2.3 discusses trans-
forming and deriving data.

Explicitly considering the choices made in abstracting from
domain-specific to generic tasks and data can be very useful in the
vis design process. The unfortunate alternative is to do this ab-
straction implicitly and without justification. For example, many
early web vis papers implicitly posited that solving the “lost in hy-
perspace” problem should be done by showing the searcher a vi-
sual representation of the topological structure of the web’s hyper-
link connectivity graph. In fact, people do not need an internal
mental representation of this extremely complex structure to find
a page of interest. Thus, no matter how cleverly the information
was visually encoded at the idiom design level, the resulting vis
tools all incurred additional cognitive load for the user rather than
reducing it.

4.3.3 Visual Encoding and Interaction Idiom
At the third level, you decide on the specific way to create and
manipulate the visual representation of the abstract data block
that you chose at the previous level, guided by the abstract tasks
that you also identified at that level. I call each distinct possible
approach an idiom. There are two major concerns at play with
idiom design. One set of design choices covers how to create a sin-
gle picture of the data: the visual encoding idiom controls exactly
what users see. Another set of questions involves how to manip-
ulate that representation dynamically: the interaction idiom con-
trols how users change what they see. For example, the Word Tree
system [Wattenberg and Viegas 08] shown in Figure 4.3 combines
the visual encoding idiom of a hierarchical tree representation of
keywords laid out horizontally, preserving information about the
context of their use within the original text, and the interaction
idiom of navigation based on keyword selection. While it’s often
possible to analyze encoding and interaction idioms as separable
decisions, in some cases these decisions are so intertwined that
it’s best to consider the outcome of these choices to be a single
combined idiom.

Idiom blocks are designed: they are the outcome of decisions
that you make. The design space of static visual encoding idioms
is already enormous, and when you consider how to manipulate
them dynamically that space of possibilities is even bigger. The

" Chapters 7 through 14
feature a thorough look at
the design space of vis id-
ioms.

72 4. Analysis: Four Levels for Validation

Figure 4.3. Word Tree combines the visual encoding idiom of a hierarchical tree of keywords laid out horizontally
and the interaction idiom of navigation based on keyword selection. From [Wattenberg and Viegas 08, Figure 3].

nested model emphasizes identifying task abstractions and decid-
ing on data abstractions in the previous level exactly so that you
can use them to rule out many of the options as being a bad match
for the goals of the users. You should make decisions about good
and bad matches based on understanding human abilities, espe-
cially in terms of visual perception and memory.

" Chapters 5 and 6 cover
principles of human percep-
tion and memory that are
relevant for making idiom
design choices.

While it’s common for vis tools to provide multiple idioms that
users might choose between, some vis tools are designed to be very
narrow in scope, supporting only a few or even just a single idiom.

4.3.4 Algorithm
The innermost level involves all of the design choices involved in
creating an algorithm: a detailed procedure that allows a computer
to automatically carry out a desired goal. In this case, the goal
is to efficiently handle the visual encoding and interaction idioms
that you chose in the previous level. Algorithm blocks are also
designed, rather than just identified.

You could design many different algorithms to instantiate the
same idiom. For example, one visual encoding idiom for creating
images from a three-dimensional field of measurements, such as
scans created for medical purposes with magnetic resonance imag-

4.4. Angles of Attack 73

ing, is direct volume rendering. Many different algorithms have
been proposed as ways to achieve the requirements of this idiom,
including ray casting, splatting, and texture mapping. You might
determine that some of these are better than others according to
measures such as the speed of the computation, how much com-
puter memory is required, and whether the resulting image is an
exact match with the specified visual encoding idiom or just an
approximation.

The nested model emphasizes separating algorithm design,
where your primary concerns are about computational issues, from
idiom design, where your primary concerns are about human per-
ceptual issues.

Of course, there is an interplay between these levels. For ex-
ample, a design that requires something to change dynamically
when the user moves the mouse may not be feasible if computing
that would take minutes or hours instead of a fraction of a second.
However, clever algorithm design could save the day if you come
up with a way to precompute data that supports a fast enough
response.

4.4 Angles of Attack

There are two common angles of attack for vis design: top down or
bottom up. With problem-driven work, you start at the top domain
situation level and work your way down through abstraction, id-
iom, and algorithm decisions. In technique-driven work, you work
at one of the bottom two levels, idiom or algorithm design, where
your goal is to invent new idioms that better support existing ab-
stractions, or new algorithms that better support existing idioms.

In problem-driven vis, you begin by grappling with the problems
of some real-world user and attempt to design a solution that helps
them work more effectively. In this vis literature, this kind of work
is often called a design study. Often the problem can be solved
using existing visual encoding and interaction idioms rather than
designing new ones, and much of the challenge lies at the abstrac-
tion level. However, sometimes the problem motivates the design
of new idioms, if you decide that no existing ones will adequately
solve the abstracted design problem.

Considering the four levels of nested model explicitly can help
you avoid the pitfall of skipping important steps in problem-driven
work. Some designers skip over the domain situation level com-
pletely, short-circuit the abstraction level by assuming that the

74 4. Analysis: Four Levels for Validation

first abstraction that comes to mind is the correct one, and jump
immediately into the third level of visual encoding and interaction
idiom design. I argue against this approach; the abstraction stage
is often the hardest to get right. A designer struggling to find the
right abstraction may end up realizing that the domain situation
has not yet been adequately characterized and jump back up to
work at that level before returning to this one. As mentioned above,
the design process for problem-driven work is almost never strictly
linear; it involves iterative refinement at all of the levels.

In technique-driven work, your starting point is an idea for a
new visual encoding or interaction idiom, or a new algorithm. In
this style of work, you start directly at one of the two lower levels
and immediately focus design at that level. Considering the nested
model can help you articulate your assumptions at the level just
above your primary focus: either to articulate the abstraction re-
quirements for your new idiom, or to articulate the idiom require-
ments for your algorithm.

The analysis framework of this book is focused on the what–
why abstraction and how idiom levels and is intended to help you
work in either direction. For problem-driven work, it allows you to
work downward when searching for existing idioms by analyzing
what design choices are appropriate for task abstraction that you
have identified and data abstraction that you have chosen. For
technique-driven work, it allows you to work upward by classifying
your proposed idiom within the framework of design choices, giv-
ing you a clear framework in which to discuss its relationship with
previously proposed idioms. Similarly, it is helpful to explicitly an-
alyze a new algorithm with respect to the idioms that it supports.
Although in some cases this analysis is very straightforward, it
can sometimes be tricky to untangle connections between algo-
rithms and idioms. Can your new algorithm simply be switched
for a previous one, providing a faster way to compute the same
visual encoding? Or does your new algorithm result in a visual
encoding different enough to constitutes a new idiom that requires
justification to show it’s a good match for human capabilities and
the intended task?

4.5 Threats to Validity

Validating the effectiveness of a vis design is difficult because there
are so many possible questions on the table. Considering the va-

" Section 1.12 presented
many questions to consider
when validating a vis design. lidity of your decisions at each level of the nested model separately

4.6. Validation Approaches 75

Domain situation
You misunderstood their needs

You’re showing them the wrong thing

Visual encoding/interaction idiom
The way you show it doesn’t work

Algorithm
Your code is too slow

Data/task abstraction

Figure 4.4. The four nested levels of vis design have different threats to validity at
each level.

can help you find your way through this thicket of questions about
validating your decisions, in the same way that the levels also con-
strain the decision-making process itself.

Each of the four levels has a different set of threats to valid-
ity: that is, different fundamental reasons why you might have
made the wrong choices.⋆ Figure 4.4 summarizes the four classes

⋆ I have borrowed the
evocative phrase threats to
validity from the computer
security domain, by way of
the software engineering lit-
erature. I use the word
validation rather than eval-
uation to underscore the
idea that validation is re-
quired for every level and
extends beyond user stud-
ies and ethnographic obser-
vation to include complex-
ity analysis and benchmark
timings. In software engi-
neering, validation is about
whether you have built the
right product, and verifica-
tion is about whether you
have built the product right.
Similarly, in the simulation
community, validation of
the scientific model with re-
spect to real-world obser-
vations is similarly consid-
ered separately from veri-
fication of the implementa-
tion, and connotes a level
of rigor beyond the methods
discussed here. My use of
validation includes both of
these questions.

of threats, where they means the target users and you means the
vis designer:

• Wrong problem: You misunderstood their needs.

• Wrong abstraction: You’re showing them the wrong thing.

• Wrong idiom: The way you show it doesn’t work.

• Wrong algorithm: Your code is too slow.

4.6 Validation Approaches

Different threats require very different approaches to validation.
Figure 4.5 shows a summary of the threats and validation ap-
proaches possible at each level. The rest of this section explains

76 4. Analysis: Four Levels for Validation

Threat Wrong problem

Threat Wrong task/data abstraction

Threat Ineffective encoding/interaction idiom

Threat Slow algorithm

Validate Observe and interview target users

Validate Analyze computational complexity

Validate Measure system time/memory

Validate Observe adoption rates

Validate Test on target users, collect anecdotal evidence of utility
Validate Field study, document human usage of deployed system

Validate Qualitative/quantitative result image analysis

Validate Lab study, measure human time/errors for task

Validate Justify encoding/interaction design

Implement system

 Test on any users, informal usability study

Figure 4.5. Threats and validation at each of the four levels. Many threats at the
outer levels require downstream validation, which cannot be carried out until the
inner levels within them are addressed, as shown by the red lines. Any single
project would only address a subset of these levels, not all of them at once.

these ideas in more detail. I give only a brief outline of each vali-
dation method here; the Further Reading section at the end of this
chapter has pointers to more thorough discussions of their use.

The analysis below distinguishes between immediate and down-
stream validation approaches. An important corollary of the model
having nested levels is that most kinds of validation for the outer
levels are not immediate because they require results from the
downstream levels nested within them. These downstream de-
pendencies add to the difficulty of validation: a poor showing of
a test may misdirect attention upstream, when in fact the prob-
lem results from a poor choice at the current level. For example, a
poor visual encoding choice may cast doubt when testing a legiti-
mate abstraction choice, or poor algorithm design may cast doubt
when testing an interaction technique. Despite their difficulties,

4.6. Validation Approaches 77

the downstream validations are necessary. The immediate vali-
dations only offer partial evidence of success; none of them are
sufficient to demonstrate that the threat to validity at that level
has been addressed.

This model uses the language of immediate and downstream
in order to make the discussion of the issues at each level eas-
ier to understand—but it is not always necessary to carry out the
full process of design and implementation at each level before do-
ing any downstream validation. There are many rapid prototyp-
ing methodologies for accelerating this process by creating low-
fidelity stand-ins exactly so that downstream validation can oc-
cur sooner. For example, paper prototypes and Wizard of Oz test-
ing [Dow et al. 05] can be used to get feedback from target users
about abstraction and encoding designs before diving into design-
ing or implementing any algorithms.

4.6.1 Domain Validation
At the top level, when characterizing the domain situation, a vis
designer is asserting that particular problems of the target audi-
ence would benefit from vis tool support. The primary threat is
that the problem is mischaracterized: the target users do not in
fact have these problems. An immediate form of validation is to
interview and observe the target audience to verify the character-
ization, as opposed to relying on assumptions or conjectures. A
common approach for this case is a field study, where the investi-
gator observes how people act in real-world settings, rather than
by bringing them into a laboratory setting. Field studies for do-
main situation assessment often involve gathering qualitative data
through semi-structured interviews. The method of contextual in-
quiry [Holtzblatt and Jones 93], where the researcher observes
users working in their real-world context and interrupts to ask
questions when clarification is needed, is typically better suited
for vis designers than silent observation because of the complex
cognitive tasks that are targeted.

One downstream form of validation is to report the rate at which
the tool has been adopted by the target audience. Of course, adop-
tion rates do not tell the whole story: many well-designed tools fail
to be adopted, and some poorly designed tools win in the market-
place. Nevertheless, the important aspect of this signal is that it
reports what the target users do of their own accord, as opposed to
the approaches below where target users are implicitly or explicitly
asked to use a tool. In particular, a tool that is actually used by its

78 4. Analysis: Four Levels for Validation

intended users has reached a different level of success than one
that has only been used by its designers.

4.6.2 Abstraction Validation

At the abstraction level, the threat is that the identified task ab-
straction blocks and designed data abstraction blocks do not solve
the characterized problems of the target audience. The key aspect
of validation against this threat is that the system must be tested
by target users doing their own work, rather than doing an abstract
task specified by the designers of the vis system.

A common downstream form of validation is to have a member
of the target user community try the tool, in hopes of collecting
anecdotal evidence that the tool is in fact useful. These anecdotes
may have the form of insights found or hypotheses confirmed. Of
course, this observation cannot be made until after all three of
the other levels have been fully addressed, after the algorithm de-
signed at the innermost level is implemented. Although this form
of validation is usually qualitative, some influential work toward
quantifying insight has been done [Saraiya et al. 05]. As with the
level above, it’s important to distinguish between a discovery made
by a target user and one that you’ve make yourself; the former is a
more compelling argument for the utility of the vis tool.

A more rigorous validation approach for this level is to conduct
a field study to observe and document how the target audience
uses the deployed system, again as part of their real-world work-
flow. The key difference between field studies at this level and
those just described for assessing domain situations is that you’re
observing how their behavior changes after intervening with the
deployment of a vis tool, as opposed to documenting their existing
work practices.

4.6.3 Idiom Validation

At the visual encoding and interaction idiom level, the threat is that
the chosen idioms are not effective at communicating the desired
abstraction to the person using the system. One immediate vali-
dation approach is to carefully justify the design of the idiom with
respect to known perceptual and cognitive principles. Evaluation

" Perceptual and cognitive
principles will be covered in
Chapters 5 and 6. methods such as heuristic evaluation [Zuk et al. 08] and expert

review [Tory and Möller 05] are a way to systematically ensure that
no known guidelines are being violated by the design.

4.6. Validation Approaches 79

A downstream approach to validate against this threat is to
carry out a lab study: a controlled experiment in a laboratory set-
ting.⋆ This method is appropriate for teasing out the impact of spe- ⋆ The term user study is

common in the vis litera-
ture, but it’s used ambigu-
ously: sometimes it’s nar-
rowly used to mean only a
lab study, whereas other
times it might also be ap-
plied to a field study. I use
it broadly, to mean both of
these.

cific idiom design choices by measuring human performance on
abstract tasks that were chosen by the study designers. Many ex-
perimental designs include both quantitative and qualitative mea-
surements. It’s extremely common to collect the objective mea-
surements of the time spent and errors made by the study par-
ticipants; subjective measurements such as their preferences are
also popular. Other kinds of quantitative data that are sometimes
gathered include logging actions such as mouse moves and clicks
by instrumenting the vis tool, or tracking the eye movements of the
participants with external gear. Qualitative data gathering often in-
cludes asking participants to reflect about their strategies through
questionnaires. In this context, the expected variation in human
behavior is small enough that it is feasible to design experiments
where the number of participants is sufficient to allow testing for
statistical significance during the analysis process.

Another downstream validation approach is the presentation of
and qualitative discussion of results in the form of still images or
video. This approach is downstream because it requires an im-
plemented system to carry out the visual encoding and interaction
specifications designed at this level. This validation approach is
strongest when there is an explicit discussion pointing out the de-
sirable properties in the results, rather than assuming that every
reader will make the desired inferences by unassisted inspection
of the images or video footage. These qualitative discussions of im-
ages sometimes occur as usage scenarios, supporting an argument
that the tool is useful for a particular task–dataset combination.

A third appropriate form of downstream validation is the quan-
titative measurement of result images created by the implemented
system; these are often called quality metrics. For example, many
measurable layout metrics such as number of edge crossings and
edge bends have been proposed to assess drawings of node–link
networks. Some of these metrics have been empirically tested
against human judgement, while others remains unproved con-
jectures.

Informal usability studies do appear in Figure 4.5, but I specif-
ically refrain from calling them a validation method. As Andrews
eloquently states: “Formative methods [including usability studies]
lead to better and more usable systems, but neither offer valida-
tion of an approach nor provide evidence of the superiority of an
approach for a particular context” [Andrews 08]. They are listed

80 4. Analysis: Four Levels for Validation

at this level because it is a very good idea to do them upstream
of attempting a validating laboratory or field study. If the system
is unusable, no useful conclusions about its utility can be drawn
from a user study. I distinguish usability studies from informal
testing with users in the target domain, as described for the level
above. Although the informal testing with target users described
at the level above may uncover usability problems, the goal is to
collect anecdotal evidence that the system meets its design goals.
Such anecdotes are much less convincing when they come from a
random person rather than a member of the target audience. In
contrast, in an informal usability study, the person using the sys-
tem does not need to be in the target audience; the only constraint
is that the user is not the system designer.

4.6.4 Algorithm Validation
At the algorithm level, the primary threat is that the algorithm is
suboptimal in terms of time or memory performance, either to a
theoretical minimum or in comparison with previously proposed
algorithms. Obviously, poor time performance is a problem if the
user expects the system to respond in milliseconds but instead the
operation takes hours or days.

" The issue of matching
system latency to user ex-
pectations is discussed in
more detail in Section 6.8.

An immediate form of validation is to analyze the computational
complexity of the algorithm, using the standard approaches from
the computer science literature. While many designers analyze al-
gorithm complexity in terms of the number of items in the dataset,
in some cases it will be more appropriate to consider the number
of pixels in the display.

The downstream form of validation is to measure the wall-clock
time and memory performance of the implemented algorithm. This
type of measurement is so common that it’s nearly mandatory for
papers claiming a contribution at the algorithm level. The primary
consideration is typically scalability in terms of how dataset size af-
fects algorithm speed. One of the trickier questions is to determine
what data you should use to test the algorithm. Considerations in-
clude matching up with standard benchmarks, which are used in
previous papers, and incorporating a sufficiently broad set of data.

Another threat is incorrectness at the algorithm level, where
the implementation does not meet the specification from the idiom
level above. The problem could come from poor algorithm design,
or the implementation of the algorithm could have bugs like any
computer program. Establishing the correctness of a computer
program is a notoriously difficult problem, whether through careful
testing or formal methods.

4.7. Validation Examples 81

The threat of algorithm incorrectness is often addressed implic-
itly rather than explicitly within the vis literature. Presenting still
images or videos created by the implemented algorithm is one form
of implicit validation against this threat, where the reader of a pa-
per can directly see that the algorithm correctness objectives have
been met. Explicit qualitative discussion of why these images show
that the algorithm is in fact correct is not as common.

4.6.5 Mismatches
A common problem in weak vis projects is a mismatch between the
level at which the benefit is claimed and the validation methodolo-
gies chosen. For example, the benefit of a new visual encoding
idiom cannot be validated by wall-clock timings of the algorithm,
which addresses a level downstream of the claim. Similarly, the
threat of a mischaracterized task cannot be addressed through a
formal laboratory study, where the task carried out by the partic-
ipants is dictated by the study designers, so again the validation
method is at a different level than the threat against the claim. The
nested model explicitly separates the vis design problem into levels
in order to guide validation according to the unique threats at each
level.

However, it would be impossible for any single research paper to
address all four levels in detail, because of limitations on space and
time—such a paper would require hundreds of pages and might
take a decade to finish! Instead, any individual research paper
would use only a small subset of these validation methods, where
careful consideration is made of which methods match the levels
of design where research contributions are being claimed.

4.7 Validation Examples

This section presents examples of several vis research papers, an-
alyzed according to the levels of vis design that they target and
the methods used to validate their benefits. These projects also
provide a preview of many approaches to vis that are discussed in
more detail later in the book.

4.7.1 Genealogical Graphs
McGuffin and Balakrishnan present a system for the visualization
of genealogical graphs [McGuffin and Balakrishnan 05]. They pro-

82 4. Analysis: Four Levels for Validation

(a) (b)

Figure 4.6. Genealogical graphs. (a) Three layouts for the dual-tree: classical node–link top-to-bottom at the top,
classical left-to-right on the left, and the new indented outline algorithm on the right. (b) Widget for subtree collapsing
and expanding with ballistic drags. From [McGuffin and Balakrishnan 05, Figures 13 and 14].

pose multiple new visual encoding idioms, including one based on
the dual-tree, a subgraph formed by the union of two trees, as
shown in Figure 4.6(a). Their prototype features sophisticated in-
teraction idioms, including automatic camera framing, animated
transitions, and a new widget for ballistically dragging out sub-
trees to arbitrary depths as shown in Figure 4.6(b).

This exemplary paper explicitly covers all four levels. The first
domain situation level is handled concisely but clearly: their do-
main is genealogy, and they briefly discuss the needs of and cur-
rent tools available for genealogical hobbyists. The paper particu-
larly shines in the analysis at the second abstraction level. They
point out that the very term family tree is highly misleading, be-

4.7. Validation Examples 83

Justify encoding/interaction design

Qualitative result image analysis

Test on target users, collect anecdotal evidence of utility

Figure 4.7. Genealogical graphs [McGuffin and Balakrishnan 05] validation levels.

cause the data type in fact is a more general graph with specialized
constraints on its structure. They discuss conditions for which the
data type is a true tree, a multitree, or a directed acyclic graph.
They map the domain problem of recognizing nuclear family struc-
ture into an abstract task of determining subgraph structure. At
the third level of the model, they discuss the strengths and weak-
nesses of several visual encoding idiom design choices, including
using connection, containment, adjacency and alignment, and in-
dentation. They present in passing two more specialized encoding

" Design choices for visual
encoding idioms for network
data are discussed in Chap-
ter 9.

idioms, fractal node–link and containment for free trees, before
presenting in detail their main proposal for visual encoding. They
also carefully address interaction idiom design, which also falls
into the third level of the model. At the fourth level of algorithm
design, they concisely cover the algorithmic details of dual-tree lay-
out.

Three validation methods are used in this paper, shown in Fig-
ure 4.7. There is the immediate justification of encoding and in-
teraction idiom design decisions in terms of established principles,
and the downstream method of a qualitative discussion of result
images and videos. At the abstraction level, there is the down-
stream informal testing of a system prototype with a target user to
collect anecdotal evidence.

4.7.2 MatrixExplorer

Henry and Fekete present the MatrixExplorer system for social net-
work analysis [Henry and Fekete 06], shown in Figure 4.8. Its de-
sign comes from requirements formalized by interviews and partic-

84 4. Analysis: Four Levels for Validation

Figure 4.8. MatrixExplorer features both node–link and matrix representations in an interface designed for sociolo-
gists and historians to explore social networks. From [Henry and Fekete 06, Figure 1].

ipatory design sessions with social science researchers. They use
both matrix representations to minimize clutter for large and dense
graphs and the more intuitive node–link representations of graphs
for smaller networks.

" The strengths and weak-
nesses of matrix and node–
link representations of net-
works are discussed in Sec-
tion 9.4. All four levels of the model are addressed, with validation at

three of the levels, shown in Figure 4.9. At the domain situa-
tion level, there is explicit characterization of the social network
analysis domain, which is validated with the qualitative techniques
of interviews and an exploratory study using participatory design
methods with social scientists and other researchers who use so-
cial network data. At the abstraction level, the paper includes a
detailed list of requirements of the target user needs discussed in
terms of abstract tasks and data. There is a thorough discussion of
the primary encoding idiom design decision to use both node–link
and matrix views to show the data, and also of many secondary
encoding issues. There is also a discussion of both basic interac-
tion idioms and more complex interaction via interactive reordering
and clustering. In both cases the authors use the immediate val-
idation method of justifying these design decisions. There is also
an extensive downstream validation of this level using qualitative
discussion of result images. At the algorithm level, the focus is
on the reordering algorithm. Downstream benchmark timings are
mentioned very briefly.

4.7. Validation Examples 85

Justify encoding/interaction design

Measure system time/memory

Qualitative result image analysis

Observe and interview target users

Figure 4.9. MatrixExplorer [Henry and Fekete 06] validation methods.

4.7.3 Flow Maps
Phan et al. propose a system for creating flow maps that show the
movement of objects from one location to another, and demon-
strate it on network traffic, census data, and trade data [Phan
et al. 05]. Flow maps reduce visual clutter by merging edges, but
most previous instances were hand drawn. They present auto-
matic techniques inspired by graph layout algorithms to minimize
edge crossings and distort node positions while maintaining rela-
tive positions, as shown in Figure 4.10. Figure 4.10(a) shows mi-

" The visual encoding of
geographic data is dis-
cussed in Section 8.3.1.gration to California, while Figure 4.10(b) shows the top ten states

sending migrants to California and New York.
In their paper, Phan et al. focus on the innermost algorithm

design level, but the idiom and abstraction levels are also cov-
ered. Their analysis of the useful characteristics of hand-drawn
flow maps falls into the abstraction level. At the idiom level, they
have a brief but explicit description of the goals of their layout al-
gorithm, namely, intelligent distortion of positions to ensure that
the separation distance between nodes is greater than the maxi-
mum thickness of the flow lines while maintaining left–right and
up–down ordering relationships. The domain situation level is ad-
dressed more implicitly than explicitly: there is no actual discus-
sion of who uses flow maps and why. However, the analysis of
hand-drawn flow maps could be construed as an implicit claim of
longstanding usage needs.

86 4. Analysis: Four Levels for Validation

(a) (b)

Figure 4.10. Flow maps showing migration patterns from 1995 to 2000 US Census data. (a) Migration from Cali-
fornia. (b) The top ten states that sent migrants to California shown in green, and to New York in blue. From [Phan
et al. 05, Figures 1c and 10].

Four validation methods were used in this paper, shown in Fig-
ure 4.11. At the algorithm level, there is an immediate complexity
analysis. There is also a brief downstream report of system timing,
saying that all images were computed in a few seconds. There is
also a more involved downstream validation through the qualita-

Justify encoding/interaction design

Computation complexity analysis
Measure system time/memory

Qualitative result image analysis

Figure 4.11. Flow map [Phan et al. 05] validation methods.

4.7. Validation Examples 87

(a) (b)

Figure 4.12. LiveRAC supports exploration of system management time-series data with a reorderable matrix and
semantic zooming. (a) The first several dozen rows have been stretched out to show sparklines for the devices. (b)
The top three rows have been enlarged more, so the charts appear in full detail. From [McLachlan et al. 08, Figure 3].

tive discussion of result images generated by their system. In this
case, the intent was mainly to discuss algorithm correctness issues
at the innermost algorithm level, as opposed to addressing the vi-
sual encoding idiom level. At the idiom level, the authors justify
their three fundamental requirements as the outcome of analyzing
hand-drawn diagrams: intelligent distortion of positions, merging
of edges that share destinations, and intelligent edge routing.

4.7.4 LiveRAC

McLachlan et al. present the LiveRAC system for exploring sys-
tem management time-series data [McLachlan et al. 08]. LiveRAC
uses a reorderable matrix of charts with stretch and squish nav-
igation combined with semantic zooming, so that the chart’s vi-
sual representation adapts to the available space. Figure 4.12(a)

" Reorderable matrix align-
ments are covered in Sec-
tion 7.5.2, semantic zoom-
ing is covered in Sec-
tion 11.5.2, and stretch and
squish navigation is cov-
ered in Section 14.5.

shows a mix of small boxes showing only a single attribute encoded
with color and somewhat larger boxes showing concise line charts.
The top three rows have been enlarged in Figure 4.12(b), providing
enough room that the representation switches to detailed charts
with axes and labels. The paper reports on an informal longitudi-
nal field study of its deployment to operators of a large corporate

88 4. Analysis: Four Levels for Validation

Justify encoding/interaction design

Qualitative result image analysis

Observe and interview target users

Field study, document usage of deployed
system

Figure 4.13. LiveRAC [McLachlan et al. 08] validation methods.

web hosting service. Four validation methods were used in this
paper, shown in Figure 4.13.

At the domain situation level, the paper explains the roles and
activities of system management professionals and their existing
workflow and tools. The validation approach was interviews with
the target audience. The phased design methodology, where man-
agement approval was necessary for access to the true target users,
led to a mix of immediate and downstream timing for this valida-
tion: many of these interviews occurred after a working prototype
was developed. This project is a good example of the iterative pro-
cess alluded to in Section 4.3.

At the abstraction level, the choice of a collection of time-series
data for data type is discussed early in the paper. The rationale
is presented in the opposite manner from the discussion above:
rather than justifying that time-series data is the correct choice for
the system management domain, the authors justify that this do-
main is an appropriate one for studying this data type. The paper
also contains a set of explicit design requirements, which includes
abstract tasks like search, sort, and filter. The downstream vali-
dation for the abstraction level is a longitudinal field study of the
system deployed to the target users, life cycle engineers for man-
aged hosting services inside a large corporation.

At the visual encoding and interaction level, there is an exten-
sive discussion of design choices, with immediate validation by jus-

4.7. Validation Examples 89

tification in terms of design principles and downstream validation
through a qualitative discussion of the results. Algorithms are not
discussed.

4.7.5 LinLog

Noack’s LinLog paper introduces an energy model for graph draw-
ing designed to reveal clusters in the data, where clusters are de-
fined as a set of nodes with many internal edges and few edges to
nodes outside the set [Noack 03]. Energy-based and force-directed
methods are related approaches to network layout and have been
heavily used in information visualization. Previous models strove

" Force-directed placement
is discussed in Section 9.2.

to enforce a layout metric of uniform edge lengths, but Noack
points out that creating visually distinguishable clusters requires
long edges between them. Figure 4.14(a) shows the success of this
approach, in contrast to the indifferentiated blob created by a pre-
viously proposed method shown in Figure 4.14(b).

Although a quick glance might lead to an assumption that this
graph drawing paper has a focus on algorithms, the primary con-
tribution is in fact at the visual encoding idiom level. The two vali-
dation methods used in the paper are qualitative and quantitative
result image analysis, shown in Figure 4.15.

Noack clearly distinguishes between the two aspects of energy-
based methods for force-directed graph layout: the energy model
itself versus the algorithm that searches for a state with minimum
total energy. In the vocabulary of my model, his LinLog energy
model is a visual encoding idiom. Requiring that the edges between
clusters are longer than those within clusters is a visual encoding

(a) (b)

Figure 4.14. The LinLog energy model reveals clusters in node–link graphs. (a)
LinLog clearly shows clusters with spatial separation. (b) The popular Fructerman-
Reingold model for force-directed placement does not separate the clusters.
From [Noack 03, Figure 1].

90 4. Analysis: Four Levels for Validation

Qualitative/quantitative result image analysis

Figure 4.15. LinLog [Noack 03] validation methods.

using the visual channel of spatial position. One downstream val-
idation approach in this paper is a qualitative discussion of result
images, which is appropriate for a contribution at the encoding
level. This paper also contains a validation method not listed in
the model, because it is relatively rare in vis: mathematical proof.
These proofs are about the optimality of the model results when
measured by quantitative metrics involving edge lengths and node
distances. Thus, this model classifies it in the quantitative image
analysis category, another appropriate method to validate at the
idiom level.

This paper does not in fact address the innermost algorithm
level. Noack explicitly leaves the problem of designing better energy-
minimization algorithms as future work, using previously proposed
algorithms to showcase the results of his model. The domain situ-
ation level is handled concisely but adequately by referencing pre-
vious work about application domains with graph data where there
is a need to see clusters. For the abstraction level, although the
paper does not directly use the vocabulary of task and data ab-
straction, it clearly states that the abstract task is finding clusters
and that the data abstraction is a network.

4.7.6 Sizing the Horizon
Heer et al. compare line charts to the more space-efficient horizon
graphs [Heer et al. 09], as Figure 4.16 shows. They identify tran-" Line charts are discussed

in Section 9.2. sition points at which reducing the chart height results in signifi-
cantly differing drops in estimation accuracy across the compared
chart types, and they find optimal positions in the speed–accuracy
trade-off curve at which viewers performed quickly without atten-
dant drops in accuracy. This paper features lab studies that are
designed to validate (or invalidate) specific design choices at the

4.8. Further Reading 91

Figure 4.16. Experiment 2 of Sizing the Horizon compared filled line charts, one-band horizon graphs, and two-
band horizon graphs of different sizes to find transition points where reducing chart height results in major drops in
estimation accuracy across chart types. From [Heer et al. 09, Figure 7].

Lab study, measure human time/errors for task

Figure 4.17. Lab studies as a validation method.

visual encoding and interaction idiom level by measuring time and
error rates of people carrying out abstracted tasks, as shown in
Figure 4.17.

4.8 Further Reading

The Big Picture I first presented the four-level nested model of vis
design as a paper [Munzner 09a], with a discussion of blocks
and guidelines between them in a follow-up paper [Meyer
et al. 13]; both of these contain many more references to pre-
vious and related work. McGrath’s analysis of the strengths
and limitations of different experimental methods is well worth
reading [McGrath 94], and it influenced my partition of vali-
dation techniques according to levels.

92 4. Analysis: Four Levels for Validation

Problem-Driven Work A good entry point for problem-driven vis work
is a detailed discussion of design study methodology, with a
nine-stage framework for conducting them and suggestions
for how to avoid 32 pitfalls [Sedlmair et al. 12]. Another
framework for problem-driven work is the Multidimensional
In-depth Long-term Case studies (MILC) approach, which also
advocates working closely with domain users [Shneiderman
and Plaisant 06].

Abstraction Level A recent paper argues that both data and task ab-
stractions are important points of departure for vis design-
ers [Pretorius and van Wijk 09]. The problems at the abstrac-
tion level fall into the realm of requirements elicitation and
analysis in software engineering; a good starting point for that
literature is a recent book chapter [Maalej and Thurimella 13].

Algorithm Level There are several existing books with a heavy focus
on the algorithm level, including two textbooks [Telea 07,
Ward et al. 10] and a large handbook [Hansen and John-
son 05]. Other options are recent survey papers on a particu-
lar topic, or specific research papers for very detailed discus-
sion about a given algorithm. The larger issues of algorithm
design are certainly not unique to vis; an excellent general ref-
erence for algorithms is a popular textbook that also covers
complexity analysis [Cormen et al. 90].

Human–Computer Interaction A comprehensive textbook is a good
starting point for the academic human–computer interaction
literature [Sharp et al. 07]. A very accessible book is a good
starting point for the large literature aimed at practitioners
[Kuniavsky 03].

Evaluation Methods A book chapter provides an excellent survey and
overview of evaluation and validation methods for vis, includ-
ing an extensive discussion of qualitative methods [Carpen-
dale 08]. Another discussion of evaluation challenges in-
cludes a call for more repositories of data and tasks [Plais-
ant 04]. A viewpoint article contains the thoughts of sev-
eral researchers on why, how, and when to do user stud-
ies [Kosara et al. 03].

Field Studies For field studies, contextual inquiry is a particularly
important method and is covered well in a book by one of its
pioneers [Holtzblatt and Jones 93].

4.8. Further Reading 93

Experiment Design For lab studies, my current favorite references
for experiment design and analysis are a cogent and acces-
sible recent monograph [Hornbaek 13], a remarkably witty
book [Field and Hole 03], and a new textbook with many ex-
amples featuring visualization [Purchase 12].

Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and Effectiveness Ranks

Figure 5.1. The effectiveness of channels that modify the appearance of marks depends on matching the expres-
siveness of channels with the attributes being encoded.

Marks and Channels

Chapter 5

5.1 The Big Picture

Marks are basic geometric elements that depict items or links, and
channels control their appearance. The effectiveness of a channel
for encoding data depends on its type: the channels that percep-
tually convey magnitude information are a good match for ordered
data, and those that convey identity information with categorical
data. Figure 5.1 summarizes the channel rankings.

5.2 Why Marks and Channels?

Learning to reason about marks and channels gives you the build-
ing blocks for analyzing visual encodings. The core of the design
space of visual encodings can be described as an orthogonal combi-
nation of two aspects: graphical elements called marks, and visual
channels to control their appearance. Even complex visual encod-
ings can be broken down into components that can be analyzed in
terms of their marks and channel structure.

5.3 Defining Marks and Channels

A mark is a basic graphical element in an image. Marks are geo-
metric primitive objects classified according to the number of spa-
tial dimensions they require. Figure 5.2 shows examples: a zero-
dimensional (0D) mark is a point, a one-dimensional (1D) mark
is a line, and a two-dimensional (2D) mark is an area. A three-
dimensional (3D) volume mark is possible, but they are not fre-
quently used.

95

96 5. Marks and Channels

Points Lines Areas

Figure 5.2. Marks are geometric primitives.

A visual channel is a way to control the appearance of marks,
independent of the dimensionality of the geometric primitive.⋆ Fig-⋆ The term channel is

popular in the vis litera-
ture and is not meant to
imply any particular theory
about the underlying mech-
anisms of human visual per-
ception. There are many,
many synonyms for visual
channel: nearly any com-
bination of visual, graphical,
perceptual, retinal for the
first word, and channel, at-
tribute, dimension, variable,
feature, and carrier for the
second word.

ure 5.3 shows a few of the many visual channels that can encode
information as properties of a mark. Some pertain to spatial po-
sition, including aligned planar position, unaligned planar posi-
tion, depth (3D position), and spatial region. Others pertain to
color, which has three distinct aspects: hue, saturation, and lu-
minance. There are three size channels, one for each added di-
mension: length is 1D size, area is 2D size, and volume is 3D size.
The motion-oriented channels include the motion pattern, for in-
stance, oscillating circles versus straight jumps, the direction of
motion, and the velocity. Angle is also a channel, sometimes called
tilt. Curvature is also a visual channel. Shape is a complex phe-
nomenon, but it is treated as a channel in this framework.

Horizontal

Position

Vertical Both

Color

Shape Tilt

Size

Length Area Volume

Figure 5.3. Visual channels control the appearance of marks.

5.3. Defining Marks and Channels 97

(a) (b) (c) (d)

Figure 5.4. Using marks and channels. (a) Bar charts encode two attributes using
a line mark with the vertical spatial position channel for the quantitative attribute,
and the horizontal spatial position channel for the categorical attribute. (b) Scat-
terplots encode two quantitative attributes using point marks and both vertical and
horizontal spatial position. (c) A third categorical attribute is encoded by adding
color to the scatterplot. (d) Adding the visual channel of size encodes a fourth
quantitative attribute as well.

Figure 5.4 shows a progression of chart types, with each show-
ing one more quantitative data attribute by using one more visual
channel. A single quantitative attribute can be encoded with ver-
tical spatial position. Bar charts are a common example of this
encoding: the height of the bar conveys a quantitative value for
that attribute, as in Figure 5.4(a). Bar charts show two attributes,
but only one is quantitative: the other is the categorical attribute
used to spread out the bars along the axis (in this case, the hor-
izontal axis). A second, independent quantitative attribute can be
encoded by using the visual channel of horizontal spatial position
to directly encode information. It doesn’t make sense any more to
use a line for the mark in this case, so the mark type needs to be
a point. This visual encoding, shown in Figure 5.4(b), is a scatter-
plot. You cannot continue to add more spatial position channels
when creating drawings in two-dimensional space, but many visual
channels are nonspatial. An additional categorical data attribute
can be encoded in a scatterplot format using the visual channel of
hue (one aspect of color), as in Figure 5.4(c). Figure 5.4(d) shows
the addition of a fourth quantitative attribute encoded with the vi-
sual channel of size.

In these examples, each attribute is encoded with a single chan-
nel. Multiple channels can be combined to redundantly encode the
same attribute. The limitation of this approach is that more chan-
nels are “used up” so that not as many attributes can be encoded
in total, but the benefit is that the attributes that are shown will
be very easily perceived.

The size and shape channels cannot be used on all types of
marks: the higher-dimensional mark types usually have built-in

98 5. Marks and Channels

constraints that arise from the way that they are defined. An
area mark has both dimensions of its size constrained intrinsi-
cally as part of its shape, so area marks typically are not size
coded or shape coded. For example, an area mark denoting a state
or province within a country on a geographic map already has a
certain size, and thus attempting to size code the mark with an
additional attribute usually doesn’t make sense.1 Similarly, the
treemap visual encoding idiom shows the hierarchical structure
of a tree using nested area marks; Figure 9.8 shows an example.
The size of these marks is determined by an existing attribute that
was used in construction of the treemap, as is their shape and
position. Changing the size of a mark according to an additional
attribute would destroy the meaning of the visual encoding.

A line mark that encodes a quantitative attribute using length in
one direction can be size coded in the other dimension by changing
the width of the line to make it fatter. However, it can’t be size
coded in the first direction to make it longer because its length is
already “taken” with the length coding and can’t be co-opted by a
second attribute. For example, the bars in Figure 5.4(a) can’t be
size coded vertically. Thus, even though lines are often considered
to be infinitely thin objects in mathematical contexts, line marks
used in visual encoding do take up a nonzero amount of area. They
can be made wider on an individual basis to encode an additional
attribute, or an entire set of bars can simply be made wider in a
uniform way to be more visible.

Point marks can indeed be size coded and shape coded because
their area is completely unconstrained. For instance, the circles of
varying size in the Figure 5.4(d) scatterplot are point marks that
have been size coded, encoding information in terms of their area.
An additional categorical attribute could be encoded by changing
the shape of the point as well, for example, to a cross or a triangle
instead of a circle. This meaning of the term point is different
than the mathematical context where it implies something that is
infinitely small in area and cannot have a shape. In the context of
visual encoding, point marks intrinsically convey information only
about position and are exactly the vehicle for conveying additional
information through area and shape.

1The cartogram visual encoding idiom, where exactly this kind of size coding of
an additional attribute on a set of geographic regions is carried out, is an exception.
This idiom carefully alters the boundaries with a unified calculation that guarantees
that the borders remain contiguous while attempting to preserve each area’s shape
as much as possible.

5.4. Using Marks and Channels 99

5.3.1 Channel Types

The human perceptual system has two fundamentally different
kinds of sensory modalities. The identity channels tell us infor-
mation about what something is or where it is. In contrast, the
magnitude channels tell us how much of something there is.⋆ ⋆ In the psychophysics

literature, the identity chan-
nels are called metathetic
or what–where, and the
magnitude channels are
called prothetic or how
much.

For instance, we can tell what shape we see: a circle, a trian-
gle, or a cross. It does not make much sense to ask magnitude
questions for shape. Other what visual channels are shape, the
color channel of hue, and motion pattern. We can tell what spatial
region marks are within, and where the region is.

In contrast, we can ask about magnitudes with line length: how
much longer is this line than that line? And identity is not a pro-
ductive question, since both objects are lines. Similarly, we can
ask luminance questions about how much darker one mark is than
another, or angle questions about how much space is between a
pair of lines, or size questions about how much bigger one mark
is than another. Many channels give us magnitude information,
including the size channels of length, area, and volume; two of the
three color channels, namely, luminance and saturation; and tilt.

5.3.2 Mark Types

The discussion so far has been focused on table datasets, where
a mark always represents an item. For network datasets, a mark
might represent either an item—also known as a node—or a link.
Link marks represent a relationship between items. The two link
mark types are connection and containment. A connection mark
shows a pairwise relationship between two items, using a line. A
containment mark shows hierarchical relationships using areas,
and to do so connection marks can be nested within each other at
multiple levels.⋆ While the visual representation of the area mark ⋆ Synonyms for contain-

ment are enclosure and
nesting.

might be with a line that depicts its boundary, containment is fun-
damentally about the use of area. Links cannot be represented by
points, even though individual items can be. Figure 5.5 summa-
rizes the possibilities.

5.4 Using Marks and Channels

All channels are not equal: the same data attribute encoded with
two different visual channels will result in different information

100 5. Marks and Channels

Marks as Items/Nodes

Marks as Links

Points Lines Areas

Containment Connection

Figure 5.5. Marks can represent individual items, or links between them.

content in our heads after it has passed through the perceptual
and cognitive processing pathways of the human visual system.

The use of marks and channels in vis idiom design should be
guided by the principles of expressiveness and effectiveness. These
ideas can be combined to create a ranking of channels according
to the type of data that is being visually encoded. If you have
identified the most important attributes as part of developing your
task and data abstraction, you can ensure that they are encoded
with the highest ranked channels.

5.4.1 Expressiveness and Effectiveness
Two principles guide the use of visual channels in visual encoding:
expressiveness and effectiveness.

The expressiveness principle dictates that the visual encoding
should express all of, and only, the information in the dataset at-
tributes. The most fundamental expression of this principle is that
ordered data should be shown in a way that our perceptual system
intrinsically senses as ordered. Conversely, unordered data should
not be shown in a way that perceptually implies an ordering that
does not exist. Violating this principle is a common beginner’s
mistake in vis.

It’s no coincidence that the classification of data attributes in
Chapter 2 has a central split along this very same line. This split
of channel types into two major categories is so fundamental to
visual encoding design that this distinction is built into the classi-

5.4. Using Marks and Channels 101

fication at the ground level. The identity channels are the correct
match for the categorical attributes that have no intrinsic order.
The magnitude channels are the correct match for the ordered at-
tributes, both ordinal and quantitative.

The effectiveness principle dictates that the importance of the
attribute should match the salience of the channel; that is, its no-
ticeability. In other words, the most important attributes should
be encoded with the most effective channels in order to be most no-
ticeable, and then decreasingly important attributes can be matched
with less effective channels.

The rest of this chapter is devoted to the question of what the
word effectiveness means in the context of visual encoding.

5.4.2 Channel Rankings
Figure 5.6 presents effectiveness rankings for the visual channels
broken down according to the two expressiveness types of ordered
and categorical data. The rankings range from the most effective
channels at the top to the least effective at the bottom.

Ordered attributes should be shown with the magnitude chan-
nels. The most effective is aligned spatial position, followed by un-
aligned spatial position. Next is length, which is one-dimensional
size, and then angle, and then area, which is two-dimensional size.
Position in 3D, namely, depth, is next. The next two channels are
roughly equally effective: luminance and saturation. The final two

" Luminance and satura-
tion are aspects of color dis-
cussed in Chapter 10.

channels, curvature and volume (3D size), are also roughly equiva-
lent in terms of accuracy.

Categorical attributes should be shown with the identity chan-
nels. The most effective channel for categorical data is spatial re-
gion, with color hue as the next best one. The motion channel is " Hue is an aspect of color

discussed in Chapter 10.also effective, particularly for a single set of moving items against
a sea of static ones. The final identity channel appropriate for cat-
egorical attributes is shape.

While it is possible in theory to use a magnitude channel for
categorical data or a identity channel for ordered data, that choice
would be a poor one because the expressiveness principle would
be violated.

The two ranked lists of channels in Figure 5.6 both have chan-
nels related to spatial position at the top in the most effective spot.
Aligned and unaligned spatial position are at the top of the list for
ordered data, and spatial region is at the top of the list for cate-
gorical data. Moreover, the spatial channels are the only ones that
appear on both lists; none of the others are effective for both data

102 5. Marks and Channels

Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and Effectiveness Ranks

Figure 5.6. Channels ranked by effectiveness according to data and channel type. Ordered data should be shown
with the magnitude channels, and categorical data with the identity channels.

types. This primacy of spatial position applies only to 2D positions
in the plane; 3D depth is a much lower-ranked channel. These

" The limitations and ben-
efits of 3D are covered in
Section 6.3. fundamental observations have motivated many of the vis idioms

illustrated in this book, and underlie the framework of idiom design
choices. The choice of which attributes to encode with position is
the most central choice in visual encoding. The attributes encoded
with position will dominate the user’s mental model—their internal
mental representation used for thinking and reasoning—compared
with those encoded with any other visual channel.

These rankings are my own synthesis of information drawn
from many sources, including several previous frameworks, exper-
imental evidence from a large body of empirical studies, and my

5.5. Channel Effectiveness 103

own analysis. The further reading section at the end of this chap-
ter contains pointers to the previous work. The following sections
of this chapter discuss the reasons for these rankings at length.

5.5 Channel Effectiveness

To analyze the space of visual encoding possibilities you need to
understand the characteristics of these visual channels, because
many questions remain unanswered: How are these rankings jus-
tified? Why did the designer decide to use those particular visual
channels? How many more visual channels are there? What kinds
of information and how much information can each channel en-
code? Why are some channels better than others? Can all of
the channels be used independently or do they interfere with each
other?

This section addresses these questions by introducing the anal-
ysis of channels according to the criteria of accuracy, discrim-
inability, separability, the ability to provide visual popout, and the
ability to provide perceptual groupings.

5.5.1 Accuracy
The obvious way to quantify effectiveness is accuracy: how close
is human perceptual judgement to some objective measurement of
the stimulus? Some answers come to us from psychophysics, the
subfield of psychology devoted to the systematic measurement of
general human perception. We perceive different visual channels
with different levels of accuracy; they are not all equally distin-
guishable. Our responses to the sensory experience of magnitude
are characterizable by power laws, where the exponent depends on
the exact sensory modality: most stimuli are magnified or com-
pressed, with few remaining unchanged.

Figure 5.7 shows the psychophysical power law of Stevens
[Stevens 75]. The apparent magnitude of all sensory channels fol-
lows a power function based on the stimulus intensity:

S = In, (5.1)

where S is the perceived sensation and I is the physical inten-
sity. The power law exponent n ranges from the sublinear 0.5 for
brightness to the superlinear 3.5 for electric current. That is, the
sublinear phenomena are compressed, so doubling the physical

104 5. Marks and Channels

Figure 5.7. Stevens showed that the apparent magnitude of all sensory channels
follows a power law S = In, where some sensations are perceptually magnified
compared with their objective intensity (when n > 1) and some compressed (when
n < 1). Length perception is completely accurate, whereas area is compressed
and saturation is magnified. Data from Stevens [Stevens 75, p. 15].

brightness results in a perception that is considerably less than
twice as bright. The superlinear phenomena are magnified: dou-
bling the amount of electric current applied to the fingertips results
is a sensation that is much more than twice as great. Figure 5.7
shows that length has an exponent of n = 1.0, so our perception of
length is a very close match to the true value. Here length means
the length of a line segment on a 2D plane perpendicular to the ob-
server. The other visual channels are not perceived as accurately:
area and brightness are compressed, while red–gray saturation is
magnified.

Another set of answers to the question of accuracy comes from
controlled experiments that directly map human response to vi-
sually encoded abstract information, giving us explicit rankings of
perceptual accuracy for each channel type. For example, Cleveland
and McGill’s experiments on the magnitude channels [Cleveland
and McGill 84a] showed that aligned position against a common
scale is most accurately perceived, followed by unaligned position
against an identical scale, followed by length, followed by angle.
Area judgements are notably less accurate than all of these. They
also propose rankings for channels that they did not directly test:
after area is an equivalence class of volume, curvature, and lumi-

5.5. Channel Effectiveness 105

Positions

Rectangular
areas

(aligned or in a
treemap)

Angles

Circular
areas

Cleveland & McGill’s Results

Crowdsourced Results

1.0 3.01.5 2.52.0
Log Error

1.0 3.01.5 2.52.0
Log Error

Figure 5.8. Error rates across visual channels, with recent crowdsourced results replicating and extending seminal
work from Cleveland and McGill [Cleveland and McGill 84a]. After [Heer and Bostock 10, Figure 4].

nance; that class is followed by hue in last place. (This last place
ranking is for hue as a magnitude channel, a very different matter
than its second-place rank as a identity channel.) These accuracy
results for visual encodings dovetail nicely with the psychophysical
channel measurements in Figure 5.7. Heer and Bostock confirmed
and extended this work using crowdsourcing, summarized in Fig-
ure 5.8 [Heer and Bostock 10]. The only discrepancy is that the
later work found length and angle judgements roughly equivalent.

106 5. Marks and Channels

The rankings in Figure 5.6 are primarily based on accuracy,
which differs according to the type of the attribute that is being
encoded, but also take into account the other four considerations.

5.5.2 Discriminability
The question of discriminability is: if you encode data using a par-
ticular visual channel, are the differences between items percepti-
ble to the human as intended? The characterization of visual chan-
nel thus should quantify the number of bins that are available for
use within a visual channel, where each bin is a distinguishable
step or level from the other.

For instance, some channels have a very limited number of
bins. Consider line width: changing the line size only works for
a fairly small number of steps. Increasing the width past that limit
will result in a mark that is perceived as a polygon area rather than
a line mark. A small number of bins is not a problem if the number
of values to encode is also small. For example, Figure 5.9 shows an
example of effective linewidth use. Linewidth can work very well to
show three or four different values for a data attribute, but it would
be a poor choice for dozens or hundreds of values. The key factor
is matching the ranges: the number of different values that need
to be shown for the attribute being encoded must not be greater
than the number of bins available for the visual channel used to
encode it. If these do not match, then the vis designer should ei-
ther explicitly aggregate the attribute into meaningful bins or use
a different visual channel.

5.5.3 Separability
You cannot treat all visual channels as completely independent
from each other, because some have dependencies and interactions
with others. You must consider a continuum of potential interac-
tions between channels for each pair, ranging from the orthogonal
and independent separable channels to the inextricably combined
integral channels. Visual encoding is straightforward with sepa-
rable channels, but attempts to encode different information in
integral channels will fail. People will not be able to access the de-
sired information about each attribute; instead, an unanticipated
combination will be perceived.

Clearly, you cannot separately encode two attributes of informa-
tion using vertical and horizontal spatial position and then expect
to encode a third attribute using planar proximity. In this case it

5.5. Channel Effectiveness 107

Figure 5.9. Linewidth has a limited number of discriminable bins.

is obvious that the third channel precludes the use of the first two.
However, some of the interchannel interference is less obvious.

Figure 5.10 shows pairs of visual channels at four points along
this continuum. On the left is a pair of channels that are com-
pletely separable: position and hue. We can easily see that the
points fall into two categories for spatial position, left and right.
We can also separately attend to their hue and distinguish the red
from the blue. It is easy to see that roughly half the points fall into
each of these categories for each of the two channels.

Next is an example of interference between channels, showing
that size is not fully separable from color hue. We can easily distin-
guish the large half from the small half, but within the small half
discriminating between the two colors is much more difficult. Size
interacts with many visual channels, including shape.

108 5. Marks and Channels

Position
 Hue (Color)

Size
 Hue (Color)

Width
 Height

Red
 Green

Fully separable Some interference Some/significant
interference

Major interference

Figure 5.10. Pairs of visual channels fall along a continuum from fully separable
to intrinsically integral. Color and location are separable channels well suited to
encode different data attributes for two different groupings that can be selectively
attended to. However, size interacts with hue, which is harder to perceive for small
objects. The horizontal size and and vertical size channels are automatically fused
into an integrated perception of area, yielding three groups. Attempts to code
separate information along the red and green axes of the RGB color space fail,
because we simply perceive four different hues. After [Ware 13, Figure 5.23].

The third example shows an integral pair. Encoding one vari-
able with horizontal size and another with vertical size is ineffective
because what we directly perceive is the planar size of the circles,
namely, their area. We cannot easily distinguish groupings of wide
from narrow, and short from tall. Rather, the most obvious per-
ceptual grouping is into three sets: small, medium, and large. The
medium category includes the horizontally flattened as well as the
vertically flattened.

The far right on Figure 5.10 shows the most inseparable chan-
nel pair, where the red and green channels of the RGB color space
are used. These channels are not perceived separately, but inte-
grated into a combined perception of color. While we can tell that
there are four colors, even with intensive cognitive effort it is very
difficult to try to recover the original information about high and
low values for each axis. The RGB color system used to specify
information to computers is a very different model than the color
processing systems of our perceptual system, so the three chan-
nels are not perceptually separable.

" Color is discussed in de-
tail in Section 10.2.

Integrality versus separability is not good or bad; the important
idea is to match the characteristics of the channels to the informa-
tion that is encoded. If the goal is to show the user two different
data attributes, either of which can be attended to selectively, then
a separable channel pair of position and color hue is a good choice.
If the goal is to show a single data attribute with three categories,

5.5. Channel Effectiveness 109

then the integral channel pair of horizontal and vertical size is a
reasonable choice because it yields the three groups of small, flat-
tened, and large.

Finally, integrality and separability are two endpoints of a con-
tinuum, not strictly binary categories. As with all of the other
perceptual issues discussed in this chapter, many open questions
remain. I do not present a definitive list with a categorization for
each channel pair, but it’s wise to keep this consideration in mind
as you design with channels.

5.5.4 Popout
Many visual channels provide visual popout, where a distinct item
stands out from many others immediately.⋆ Figure 5.11 shows two ⋆ Visual popout is of-

ten called preattentive pro-
cessing or tunable detec-
tion.

examples of popout: spotting a red object from a sea of blue ones,
or spotting one circle from a sea of squares. The great value of
popout is that the time it takes us to spot the different object does
not depend on the number of distractor objects. Our low-level
visual system does massively parallel processing on these visual
channels, without the need for the viewer to consciously directly
attention to items one by one. The time it takes for the red circle
to pop out of the sea of blue ones is roughly equal when there are
15 blue ones as in Figure 5.11(a) or 50 as in Figure 5.11(b).

Popout is not an all-or-nothing phenomenon. It depends on
both the channel itself and how different the target item is from
its surroundings. While the red circle pops out from the seas of
15 and 50 red squares in Figures 5.11(c) and 5.11(d) at roughly

(a) (b) (c) (d) (e) (f)

Figure 5.11. Visual popout. (a) The red circle pops out from a small set of blue circles. (b) The red circle pops out
from a large set of blue circles just as quickly. (c) The red circle also pops out from a small set of square shapes,
although a bit slower than with color. (d) The red circle also pops out of a large set of red squares. (e) The red circle
does not take long to find from a small set of mixed shapes and colors. (f) The red circle does not pop out from a
large set of red squares and blue circles, and it can only be found by searching one by one through all the objects.
After http://www.csc.ncsu.edu/faculty/healey/PP by Christopher G. Healey.

110 5. Marks and Channels

(a) (b) (c)

(d) (e) (f)

Figure 5.12. Many channels support visual popout, including (a) tilt, (b) size,
(c) shape, (d) proximity, and (e) shadow direction. (f) However, parallel line pairs
do not pop out from a sea of slightly tilted distractor object pairs and can only be
detected through serial search. After http://www.csc.ncsu.edu/faculty/healey/PP by
Christopher G. Healey.

the same time, this popout effect is slower than with the color
difference versions in Figures 5.11(a) and 5.11(b). The difference
between red and blue on the color hue channel is larger than the
difference in shape between filled-in circles and filled-in squares.

Although many different visual channels provide popout on their
own, they cannot simply be combined. A red circle does not pop out
automatically from a sea of objects that can be red or blue and cir-
cles or squares: the speed of finding the red circle is much faster in
Figures 5.11(e) with few distracting objects than in Figure 5.11(f)
with many distractors. The red circle can only be detected with
serial search: checking each item, one by one. The amount of time
it takes to find the target depends linearly on the number of dis-
tractor objects.

Most pairs of channels do not support popout, but a few pairs
do: one example is space and color, and another is motion and
shape. Popout is definitely not possible with three or more chan-
nels. As a general rule, vis designers should only count on using
popout for a single channel at a time.

5.5. Channel Effectiveness 111

Popout occurs for many channels, not just color hue and shape.
Figures 5.12(a) through 5.12(e) show several examples: tilt, size,
shape, proximity, and even shadow direction. Many other chan-
nels support popout, including several different kinds of motion
such as flicker, motion direction, and motion velocity. All of the
major channels commonly used in visual encoding that are shown
in Figure 5.6 do support popout individually, although not in com-
bination with each other. However, a small number of potential
channels do not support popout. Figure 5.12(f) shows that par-
allelism is not preattentively detected; the exactly parallel pair of
lines does not pop out from the slightly angled pairs but requires
serial search to detect.

5.5.5 Grouping
The effect of perceptual grouping can arises from either the use
of link marks, as shown in Figure 5.5, or from the use of iden-
tity channels to encode categorical attributes, as shown in Fig-
ure 5.6.

Encoding link marks using areas of containment or lines of
connection conveys the information that the linked objects form
a group with a very strong perceptual cue. Containment is the
strongest cue for grouping, with connection coming in second.

Another way to convey that items form a group is to encode cat-
egorical data appropriately with the identity channels. All of the
items that share the same level of the categorical attribute can be
perceived as a group by simply directing attention to that level se-
lectively. The perceptual grouping cue of the identity channels is
not as strong as the use of connection or containment marks, but
a benefit of this lightweight approach is that it does not add addi-
tional clutter in the form of extra link marks. The third strongest
grouping approach is proximity; that is, placing items within the
same spatial region. This perceptual grouping phenomenon is the
reason that the top-ranked channel for encoding categorical data
is spatial region. The final grouping channel is similarity with the
other categorical channels of hue and motion, and also shape if
chosen carefully. Logically, proximity is like similarity for spatial
position; however, from a perceptual point of view the effect of the
spatial channels is so much stronger than the effect of the others
that it is is useful to consider them separately.

For example, the categorical attribute of animal type with the
three levels of cat, dog, and wombat can be encoded with the three
hue bins of red, green, and blue respectively. A user who chooses

112 5. Marks and Channels

to attend to the blue hue will automatically see all of the wombats
as a perceptual group globally, across the entire scene.

The shape channel needs to be used with care: it is possible to
encode categorical data with shape in a way that does not auto-
matically create perceptual groupings. For example, the shapes of
a forward ‘C’ and a backward ‘C’ do not automatically form globally
selectable groups, whereas the shapes of a circle versus a star do.
Similarly, motion also needs to be used with care. Although a set
of objects moving together against a background of static objects is
a very salient cue, multiple levels of motion all happening at once
may overwhelm the user’s capacity for selective attention.

5.6 Relative versus Absolute Judgements

The human perceptual system is fundamentally based on relative
judgements, not absolute ones; this principle is known as Weber’s
Law.⋆ For instance, the amount of length difference we can detect⋆ More formally, Weber’s

Law is typically stated as
the detectable difference in
stimulus intensity I as a
fixed percentage K of the
object magnitude: δI/I =

K.

is a percentage of the object’s length.
This principle holds true for all sensory modalities. The fact that

our senses work through relative rather than absolute judgements
has far-ranging implications. When considering questions such
as the accuracy and discriminability of our perceptions, we must
distinguish between relative and absolute judgements. For exam-
ple, when two objects are directly next to each other and aligned,
we can make much more precise judgements than when they are
not aligned and when they are separated with many other objects
between them.

An example based on Weber’s Law illuminates why position
along a scale can be more accurately perceived than a pure length
judgement of position without a scale. The length judgement in
Figure 5.13(a) is difficult to make with unaligned and unframed
bars. It is easier with framing, as in Figure 5.13(b), or alignment,
as in Figure 5.13(c), so that the bars can be judged against a com-
mon scale. When making a judgement without a common scale,
the only information is the length of the bars themselves. Placing
a common frame around the bars provides another way to estimate
magnitude: we can check the length of the unfilled bar. Bar B is
only about 15% longer than Bar A, approaching the range where
length differences are difficult to judge. But the unfilled part of
the frame for Bar B is about 50% smaller than the one for Bar A,
an easily discriminable difference. Aligning the bars achieves the
same effect without the use of a frame.

5.6. Relative versus Absolute Judgements 113

A
B

Unframed
Unaligned

(a)

Framed
Unaligned

A
B

(b)

A B

Unframed
Aligned

(c)

Figure 5.13. Weber’s Law states that we judge based on relative, not absolute
differences. (a) The lengths of unframed, unaligned rectangles of slightly different
sizes are hard to compare. (b) Adding a frame allows us to compare the very dif-
ferent sizes of the unfilled rectangles between the bar and frame tops. (c) Aligning
the bars also makes the judgement easy. Redrawn and extended after [Cleveland
and McGill 84a, Figure 12].

Another example shows that our perception of color and lumi-
nance is completely contextual, based on the contrast with sur-
rounding colors. In Figure 5.14(a), the two labeled squares in a
checkerboard appear to be quite different shades of gray. In Fig-
ure 5.14(b), superimposing a solid gray mask that touches both
squares shows that they are identical. Conversely, Figure 5.15

(a) (b)

Figure 5.14. Luminance perception is based on relative, not absolute, judgements.
(a) The two squares A and B appear quite different. (b) Superimposing a gray
mask on the image shows that they are in fact identical.

114 5. Marks and Channels

(a) (b)

Figure 5.15. Color perception is also relative to surrounding colors and depends on context. (a) Both cubes have
tiles that appear to be red. (b) Masking the intervening context shows that the colors are very different: with yellow
apparent lighting, they are orange; with blue apparent lighting, they are purple.

shows two colorful cubes. In Figure 5.15(a) corresponding squares
both appear to be red. In Figure 5.15(b), masks show that the
tile color in the image apparently illuminated by a yellowish light
source is actually orange, and for the bluish light the tiles are actu-
ally purple. Our visual system evolved to provide color constancy
so that the same surface is identifiable across a broad set of illumi-
nation conditions, even though a physical light meter would yield
very different readings. While the visual system works very well
in natural environments, many of its mechanisms work against
simple approaches to visually encoding information with color.

5.7 Further Reading

The Big Picture The highly influential theory of visual marks and
channels was proposed by Bertin in the 1960s [Bertin 67].
The ranking of channel effectiveness proposed in this chap-
ter is my synthesis across the ideas of many previous authors
and does not come directly from any specific source. It was in-
fluenced by the foundational work on ranking of visual chan-
nels through measured-response experiments [Cleveland and
McGill 84a], models [Cleveland 93a], design guidelines for

5.7. Further Reading 115

matching visual channels to data type [Mackinlay 86], and
books on visualization [Ware 13] and cartography [MacEach-
ren 95]. It was also affected by the more recent work on
crowdsourced judgements [Heer and Bostock 10], taxonomy-
based glyph design [Maguire et al. 12], and glyph design in
general [Borgo et al. 13].

Psychophysical Measurement The foundational work on the variable
distinguishability of different visual channels, the categoriza-
tion of channels as metathetic identity and prothetic magni-
tude, and scales of measurement was done by a pioneer in
psychophysics [Stevens 57,Stevens 75].

Effectiveness and Expressiveness Principles The principles of expres-
siveness for matching channel to data type and effectiveness
for choosing the channels by importance ordering appeared
in a foundational paper [Mackinlay 86].

Perception This chapter touches on many perceptual and cognitive
phenomena, but I make no attempt to explain the mecha-
nisms that underlie them. I have distilled an enormous liter-
ature down to the bare minimum of what a beginning vis de-
signer needs to get started. The rich literature on perception
and cognitive phenomena is absolutely worth a closer look,
because this chapter only scratches the surface; for example,
the Gestalt principles are not covered.

Ware offers a broad, thorough, and highly recommended in-
troduction to perception for vis in his two books [Ware 08,
Ware 13]. His discussion includes more details from nearly
all of the topics in this chapter, including separability and
popout. An overview of the literature on popout and other
perceptual phenomena appears on a very useful page that in-
cludes interactive demos http://www.csc.ncsu.edu/faculty/
healey/PP [Healey 07]; one of the core papers in this litera-
ture begins to untangle what low-level features are detected
in early visual processing [Treisman and Gormican 88].

• No Unjustified 3D

– The Power of the Plane
– The Disparity of Depth
– Occlusion Hides Information
– Perspective Distortion Dangers
– Tilted Text Isn’t Legible

• No Unjustified 2D

• Eyes Beat Memory

• Resolution over Immersion

• Overview First, Zoom and Filter, Detail on Demand

• Responsiveness Is Required

• Get It Right in Black and White

• Function First, Form Next

Figure 6.1. Eight rules of thumb.

Rules of Thumb

Chapter 6

6.1 The Big Picture

This chapter contains rules of thumb: advice and guidelines. Each
of them has a catchy title in hopes that you’ll remember it as a
slogan. Figure 6.1 lists these eight rules of thumb.

6.2 Why and When to Follow Rules of Thumb?

These rules of thumb are my current attempt to synthesize the cur-
rent state of knowledge into a more unified whole. In some cases I
refer to empirical studies, in others I make arguments based on my
own experience, and some have been proposed in previous work.
They are not set in stone; indeed, they are deeply incomplete. The
characterization of what idioms are appropriate for which task and
data abstractions is still an ongoing research frontier, and there
are many open questions.

6.3 No Unjustified 3D

Many people have the intuition that if two dimensions are good,
three dimensions must be better—after all, we live in a three-
dimensional world. However, there are many difficulties in visu-
ally encoding information with the third spatial dimension, depth,
which has important differences from the two planar dimensions.

In brief, 3D vis is easy to justify when the user’s task involves
shape understanding of inherently three-dimensional structures.
In this case, which frequently occurs with inherently spatial data,
the benefits of 3D absolutely outweigh the costs, and designers can
use the many interaction idioms designed to mitigate those costs.

In all other contexts, the use of 3D needs to be carefully justi-
fied. In most cases, rather than choosing a visual encoding using

117

118 6. Rules of Thumb

three dimensions of spatial position, a better answer is to visually
encode using only two dimensions of spatial position. Often an
appropriate 2D encoding follows from a different choice of data ab-
straction, where the original dataset is transformed by computing
derived data.

The cues that convey depth information to our visual system
include occlusion, perspective distortion, shadows and lighting,
familiar size, stereoscopic disparity, and others. This section dis-
cusses the costs of these depth cues in a visual encoding context
and the challenges of text legibility given current display technol-
ogy. It then discusses situations where the benefits of showing
depth information could outweigh these costs and the need for jus-
tification that the situation has been correctly analyzed.

6.3.1 The Power of the Plane
A crucial point when interpreting the channel rankings in Fig-
ure 5.6 is that the spatial position channels apply only to planar
spatial position, not arbitrary 3D position.

Vertical and horizontal position are combined into the shared
category of planar because the differences between the up–down
and side-to-side axes are relatively subtle. We do perceive height
differences along the up–down axis as more important than hor-
izontal position differences, no doubt due to the physical effects
of gravity in real life. While the vertical spatial channel thus has
a slight priority over the horizontal one, the aspect ratio of stan-
dard displays gives more horizontal pixels than vertical ones, so
information density considerations sometimes override this con-
cern. For the perceived importance of items ordered within the
axes, reading conventions probably dominate. Most Western lan-
guages go from left to right and from top to bottom, but Arabic and
Hebrew are read from right to left, and some Asian languages are
read vertically.

6.3.2 The Disparity of Depth
The psychophysical power law exponents for accuracy shown in
Figure 5.7 are different for depth position judgements in 3D than
for planar position judgements in 2D. Our highly accurate length
perception capability, with the linear n value of 1.0, only holds for
planar spatial position. For depth judgements of visual distance,
n was measured as 0.67 [Stevens 57]; that exponent is even worse
than the value of 0.7 for area judgements. This phenomenon is

6.3. No Unjustified 3D 119

TowardAway

Up

Down

Right

Left

(a)

Thousands of points up/down and left/right

We can only see the outside shell of the world

(b)

Figure 6.2. Seeing planar position versus depth. (a) The sideways and up–down
axes are fundamentally different from the toward–away depth axis. (b) Along the
depth axis we can see only one point for each ray, as opposed to millions of rays
for the other two axes. After [Ware 08, page 44].

not surprising when considered mathematically, because as shown
in Figure 6.2 the length of a line that extends into the scene is
scaled nonlinearly in depth, whereas a line that traverses the pic-
ture plane horizontally or vertically is scaled linearly, so distances
and angles are distorted [St. John et al. 01].

Considered perceptually, the inaccuracy of depth judgements is
also not surprising; the common intuition that we experience the
world in 3D is misleading. We do not really live in 3D, or even 2.5D:
to quote Colin Ware, we see in 2.05D [Ware 08]. That is, most of
the visual information that we have is about a two-dimensional im-
age plane, as defined below, whereas the information that we have
about a third depth dimension is only a tiny additional fraction
beyond it. The number of 0.05 is chosen somewhat arbitrarily to
represent this tiny fraction.

Consider what we see when we look out at the world along
a ray from some fixed viewpoint, as in Figure 6.2(a). There is
a major difference between the toward–away depth axis and the
other two axes, sideways and up–down. There are millions of rays
that we can see along these two axes by simply moving our eyes,
to get information about the nearest opaque object. This infor-
mation is like a two-dimensional picture, often called the image
plane. In contrast, we can only get information at one point along
the depth axis for each ray away from us toward the world, as
in Figure 6.2(b). This phenomenon is called line-of-sight ambigu-
ity [St. John et al. 01]. In order to get more information about what
is hidden behind the closest objects shown in the image plane, we

120 6. Rules of Thumb

would need to move our viewpoint or the objects. At best we could
change the viewpoint by simply moving our head, but in many
cases we would need to move our body to a very different position.

6.3.3 Occlusion Hides Information
The most powerful depth cue is occlusion, where some objects can-
not be seen because they are hidden behind others. The visible
objects are interpreted as being closer than the occluded ones.
The occlusion relationships between objects change as we move
around; this motion parallax allows us to build up an understand-
ing of the relative distances between objects in the world.

When people look at realistic scenes made from familiar objects,
the use of motion parallax typically does not impose cognitive load
or require conscious attention. In synthetic scenes, navigation
controls that allow the user to change the 3D viewpoint interac-
tively invoke the same perceptual mechanisms to provide motion
parallax. In sufficiently complex scenes where a single fixed view-
point does not provide enough information about scene structure,
interactive navigation capability is critical for understanding 3D
structure. In this case, the cost is time: interactive navigation
takes longer than inspecting a single image.

The overarching problem with occlusion in the context of visual
encoding is that presumably important information is hidden, and
discovering it via navigation has a time cost. In realistic environ-
ments, there is rarely a need to inspect all hidden surfaces. How-
ever, in a vis context, the occluded detail might be critical. It is
especially likely to be important when using spatial position as a
visual channel for abstract, nonspatial data.

Moreover, if the objects have unpredictable and unfamiliar
shapes, understanding the three-dimensional structure of the scene
can be very challenging. In this case there can be appreciable cog-
nitive load because people must use internal memory to remember
the shape from previous viewpoints, and internally synthesize an
understanding of the structure. This case is common when using
the spatial position channels for visual encoding. Figure 6.3 illus-
trates the challenges of understanding the topological structure of
a node–link graph laid out in 3D, as an example of the unfamiliar
structure that arises from visually encoding an abstract dataset.
Synthesizing an understanding of the structure of the linkages hid-
den from the starting viewpoint shown here is likely to take a con-
siderable amount of time. While sophisticated interaction idioms
have been proposed to help users do this synthesis more quickly

6.3. No Unjustified 3D 121

Figure 6.3. Resolving the 3D structure of the occluded parts of the scene is possi-
ble with interactive navigation, but that takes time and imposes cognitive load, even
when sophisticated interaction idioms are used, as in this example of a node–link
graph laid out in 3D space. From [Carpendale et al. 96, Figure 21].

than with simple realistic navigation, thus lowering the time cost,
vis designers should always consider whether the benefits of 3D
are worth the costs.

6.3.4 Perspective Distortion Dangers
The phenomenon of perspective distortion is that distant objects
appear smaller and change their planar position on the image
plane. Imagine a photograph looking along railroad tracks: al-

" The disparity in our per-
ception of depth from our
perception of planar spa-
tial position is discussed in
Section 6.3.2.

though they are of course parallel, they appear to draw together as
they recede into the distance. Although the tracks have the same
width in reality, measuring with a ruler on the photograph itself
would show that in the picture the width of the nearby track is
much greater than that of the distant track.⋆ ⋆ The phenomenon of per-

spective distortion is also
known as foreshortening.

One of the major breakthroughs of Western art was the Renais-
sance understanding of the mathematics of perspective to create
very realistic images, so many people think of perspective as a good

122 6. Rules of Thumb

Figure 6.4. 3D bar charts are more difficult than 2D bar charts because of both
perspective distortion and occlusion. From [Few 07, Question 7].

thing. However, in the context of visually encoding abstract data,
perspective is a very bad thing! Perspective distortion is one of
the main dangers of depth because the power of the plane is lost;
it completely interferes with visual encodings that use the planar
spatial position channels and the size channel. For example, it is
more difficult to judge bar heights in a 3D bar chart than in mul-
tiple horizontally aligned 2D bar charts, as shown in Figure 6.4.
Foreshortening makes direct comparison of bar heights difficult.

Figure 6.5 shows another example where size coding in multiple
dimensions is used for bars that recede into the distance in 3D on
a ground plane. The result of the perspective distortion is that
the bar sizes cannot be directly compared as a simple perceptual
operation.

Figure 6.5. With perspective distortion, the power of the planar spatial position
channel is lost, as is the size channel. From [Mukherjea et al. 96, Figure 1].

6.3. No Unjustified 3D 123

6.3.5 Other Depth Cues

In realistic scenes, one of the depth cues is the size of familiar
objects. We roughly know the size of a car, so when we see one at
a distance we can estimate the size of a nearby unfamiliar object.
If all objects in the scene are visually encoded representations of
abstract information, we do not have access to this strong depth
cue.

The depth cues of shadows and surface shading also commu-
nicate depth and three-dimensional structure information. Cast
shadows are useful for resolving depth ambiguity because they al-
low us to infer the height of an object with respect to a ground
plane. Shading and self-shadowing show the three-dimensional
shape of an object. One problem with using these lighting-based
cues when visualizing abstract data is that they create visual clut-
ter that distracts the viewer’s attention from the meaningful parts
of the scene that represent information. Another problem is that
cast shadows, regions of self-shadowing, or highlights could be
mistaken by the viewer for true marks that are the substrate for
the visual channels showing attribute information. Cast shad-
ows could also cause problems by occluding true marks. The fi-
nal problem is that surface shading effects interfere with the color
channels: highlights can change the hue or saturation, and shad-
ows change the luminance.

Stereoscopic depth is a cue that comes from the disparities be-
tween two images made from two camera viewpoints slightly sepa-
rated in space, just like our two eyes are. In contrast, all of the pre-
vious discussion pertained to pictoral cues from a single camera.
Although many people assume that stereo vision is the strongest
depth cue, it is in fact a relatively weak one compared with the
others listed above and contributes little for distant objects. Stereo
depth cues are most useful for nearby objects that are at roughly
the same depth, providing guidance for manipulating things within
arm’s reach.

Stereo displays, which deliver a slightly different image for each
of our two eyes, do help people better resolve depth. Conveniently,
they do not directly interfere with any of the main visual channels.
Stereo displays do indeed improve the accuracy of depth perception
compared with single-view displays—but even still depth cannot be
perceived with the accuracy of planar position. Of course, stereo
cannot solve any of the problems associated with perspective dis-
tortion.

124 6. Rules of Thumb

The relatively subtle depth cue of atmospheric perspective,
where the color of distant objects is shifted toward blue, would
conflict with color encoding.

6.3.6 Tilted Text Isn’t Legibile

Another problem with the use of 3D is dramatically impaired text
legibility with most standard graphics packages that use current
display technology [Grossman et al. 07]. Text fonts have been
very carefully designed for maximum legibility when rendered on
the grid of pixels that makes up a 2D display, so that characters
as little as nine pixels high are easily readable. Although hard-
ware graphics acceleration is now nearly pervasive, so that text
positioned at arbitrary orientations in 3D space can be rendered
quickly, this text is usually not rendered well. As soon as a text
label is tilted in any way off of the image plane, it typically becomes
blocky and jaggy. The combination of more careful rendering and
very high-resolution displays of many hundred of dots per inch
may solve this problem in the future, but legibility is a major prob-
lem today.

6.3.7 Benefits of 3D: Shape Perception

The great benefit of using 3D comes when the viewer’s task fun-
damentally requires understanding the three-dimensional geomet-
ric structure of objects or scenes. In almost all of these cases,
a 3D view with interactive navigation controls to set the 3D view-
point will allow users to construct a useful mental model of dataset
structure more quickly than simply using several 2D axis-aligned
views. For these tasks, all of the costs of using 3D discussed above
are outweighed by the benefit of helping the viewer build a mental
model of the 3D geometry.

For example, although people can be trained to comprehend
blueprints with a top view and two side views, synthesizing the
information contained within these views to understand what a
complex object looks like from some arbitrary 3D viewpoint is a dif-
ficult problem that incurs significant cognitive and memory load.
The 2D blueprint views are better for the task of accurately dis-
criminating the sizes of building elements, which is why they are
still heavily used in construction. However, there is considerable
experimental evidence that 3D outperforms 2D for shape under-
standing tasks [St. John et al. 01].

6.3. No Unjustified 3D 125

Figure 6.6. The use of 3D is well justified when the central task is shape under-
standing, as in this example of 3D streamline showing the patterns of fluid flow
through a volume. From [Li and Shen 07, Figure 9].

Most tasks that have inherently 3D spatial data after the ab-
straction stage fall into this category. Some classical examples are
fluid flow over an airplane wing, a medical imaging tomography
dataset of the human body, or molecular interaction within a liv-
ing cell. Figure 6.6 shows an example of streamlines in 3D fluid

" Streamlines are discus-
sed further in Section 8.5,
and geometric navigation in
Section 11.5.flow [Li and Shen 07], where geometric navigation based on 3D

rotation is a good strategy to help users understand the complex
shapes quickly.

6.3.8 Justification and Alternatives

The question of whether to use two or three channels for spatial
position has now been extensively studied. When computer-based
vis began in the late 1980s, there was a lot of enthusiasm for 3D
representations. As the field matured, researchers began to bet-
ter appreciate the costs of 3D approaches when used for abstract
datasets [Ware 01]. By now, the use of 3D for abstract data re-
quires careful justification. In many cases, a different choice at
the abstraction or visual encoding levels would be more appropri-
ate.

Example: Cluster–Calendar Time-Series Vis

A good example is a system from van Wijk and van Selow designed to
browse time-series data [van Wijk and van Selow 99]. The dataset has two

126 6. Rules of Thumb

KW
0:00

6:00

12:00

18:00

24:00

hours

1 jan.

5 feb.

days

KW

12 mar.

16 apr.

21 may

25 jun.

30 jul.

3 sep.

8 oct.

12 nov.

17 dec.

Total KW consumption ECN

0

400

800

1200

1600

2000

(a)

(b)

Figure 6.7. 3D versus 2D. (a) A 3D representation of this time-series dataset introduces the problems of occlusion
and perspective distortion. (b) The linked 2D views of derived aggregate curves and the calendar allow direct
comparison and show more fine-grained patterns. From [van Wijk and van Selow 99, Figures 1 and 4].

6.3. No Unjustified 3D 127

related sets of measurements: the number of people inside and amount
of power used in an office building, with measurements over the course
of each day for one full year. The authors compare a straightforward 3D
representation with a carefully designed approach using linked 2D views,
which avoids the problems of occlusion and perspective distortion. Fig-
ure 6.7(a) shows the straightforward 3D representation created directly
from the original time-series data, where each cross-section is a 2D time
series curve showing power consumption for one day, with one curve for
each day of the year along the extruded third axis. Only very large-scale
patterns such as the higher consumption during working hours and the
seasonal variation between winter and summer are visible.

The final vis designed by the authors uses multiple linked 2D views
and a different data abstraction. They created the derived data of a hier- " Linked views are dis-

cussed in Chapter 12.archical clustering of the time-series curves through an iterative process
where the most similar curves are merged together into a cluster that can
be represented by the average of the curves within it.

Figure 6.7(b) shows a single aggregate curve for each of the highest-
level groups in the clustering in the window on the right of the display.
There are few enough of these aggregate curves that they can all be su-
perimposed in the same 2D image without excessive visual clutter. Di-
rect comparison between the curve heights at all times of the day is easy
because there is no perspective distortion or occlusion. (The cluster–
calendar vis shows the number of people in the building, rather than the
power consumption of the 3D extruded vis.)

On the left side of Figure 6.7(b) is a calendar view. Calendars are a
very traditional and successful way to show temporal patterns. The views
are linked with shared color coding. The same large-scale patterns of
seasonal variation between summer and winter that can be seen in 3D are
still very visible, but smaller-scale patterns that are difficult or impossible
to spot in the 3D view are also revealed. In this Dutch calendar, weeks are
vertical strips with the weekend at the bottom. We can identify weekends
and holidays as the nearly flat teal curve where nobody is in the building,
and normal weekdays as the topmost tan curve with a full house. Summer
and Fridays during the winter are the brown curve with one hundred fewer
people, and Fridays in the summer are the green curve with nearly half
of the employees gone. The blue and magenta curves show days between
holiday times where most people also take vacation. The red curve shows
the unique Dutch holiday of Santa Claus day, where everybody gets to
leave work an hour early.

While unbridled enthusiasm for 3D is no longer common, there
are indeed situations where its use is justifiable even for abstract
data.

128 6. Rules of Thumb

Example: Layer-Oriented Time-Series Vis

Figure 6.8 shows an example that is similar on the surface to the pre-
vious one, but in this case 3D is used with care and the design is well
justified [Lopez-Hernandez et al. 10]. In this system for visualizing os-
cilloscope time-series data, the user starts by viewing the data using the
traditional eye diagram where the signal is wrapped around in time and
shown as many overlapping traces. Users can spread the traces apart
using the metaphor of opening a drawer, as shown in Figure 6.8(a). This
drawer interface does use 3D, but with many constraints. Layers are or-
thographically projected and always face the viewer. Navigation complexity
is controlled by automatically zooming and framing as the user adjusts the
drawer’s orientation, as shown in Figure 6.8(b).

(a)

(b)

Figure 6.8. Careful use of 3D. (a) The user can evolve the view from the traditional
overlapping eye diagram with the metaphor of opening a drawer. (b) The interac-
tion is carefully designed to avoid the difficulties of unconstrained 3D navigation.
From [Lopez-Hernandez et al. 10, Figures 3 and 7].

6.3. No Unjustified 3D 129

6.3.9 Empirical Evidence

Empirical experiments are critical in understanding user perfor-
mance, especially because of the well-documented dissociation be-
tween stated preference for 3D and actual task performance [An-
dre and Wickens 95]. Experimental evidence suggests that 3D in-
terfaces are better for shape understanding, whereas 2D are best
for relative position tasks: those that require judging the precise
distances and angles between objects [St. John et al. 01]. Most
tasks involving abstract data do not benefit from 3D; for exam-
ple, an experiment comparing 3D cone trees to an equivalent 2D
tree browser found that the 3D interaction had a significant time
cost [Cockburn and McKenzie 00].

Designing controlled experiments that untangle the efficacy of
specific interfaces that use 3D can be tricky. Sometimes the goal
of the experimenter is simply to compare two alternative interfaces
that differ in many ways; in such cases it is dangerous to conclude
that if an interface that happens to be 3D outperforms another
that happens to be 2D, it is the use of 3D that made the differ-
ence. In several cases, earlier study results that were interpreted
as showing benefits for 3D were superseded by more careful exper-
imental design that eliminated uncontrolled factors. For example,
the 3D Data Mountain interface for organizing web page thumbnail
images was designed to exploit human spatial cognition and was
shown to outperform the standard 2D Favorites display in Internet
Explorer [Robertson et al. 98]. However, this study left open the
question of whether the benefit was from the use of 3D or the use
of the data mountain visual encoding, namely, a spatial layout al-
lowing immediate access to every item in each pile of information.
A later study compared two versions of Data Mountain, one with
3D perspective and one in 2D, and no performance benefit for 3D
was found [Cockburn and McKenzie 01].

Another empirical study found no benefits for 3D landscapes
created to reflect the density of a 2D point cloud, compared with
simply showing the point cloud in 2D [Tory et al. 07]. In the 3D
information landscape idiom, the density of the points on the plane
is computed as a derived attribute and used to construct a surface
whose height varies according to this attribute in order to show
its value in a form similar to geographic terrain.⋆ A third alterna-

⋆ Other names for a 3D
landscape are height field
and terrain.tive to landscapes or points is a contour plot, where colored bands

show the outlines of specific heights. A contour plot can be used
" Contour plots are dis-
cussed in Section 8.4.1.

alone as a 2D landscape or can be combined with 3D for a colored
landscape. Proponents of this idiom have argued that landscapes

130 6. Rules of Thumb

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.9. Point-based displays were found to outperform information landscapes in an empirical study of visual
encodings for dimensionally reduced data. (a) Colored points. (b) Grayscale points. (c) Colored 2D landscape.
(d) Grayscale 2D landscape. (e) Colored 3D landscape. (f) Grayscale 3D landscape. (g) Height only. From [Tory
et al. 07, Figure 1].

are familiar and engaging, and they have been used in several sys-
tems for displaying high-dimensional data after dimensionality re-
duction was used to reduce to two synthetic dimensions [Davidson
et al. 01,Wise et al. 95].

" Dimensionality reduction
is discussed in Section
13.4.3.

Figure 6.9 shows the seven possibilities tested in the empirical
study comparing points to colored and uncolored landscapes. The
findings were that points were far superior to landscapes for search
and point estimation tasks and in the landscape case 2D land-
scapes were superior to 3D landscapes [Tory et al. 07]. A follow-
up study for a visual memory task yielded similar results [Tory
et al. 09].

6.4. No Unjustified 2D 131

6.4 No Unjustified 2D

Laying out data in 2D space should also be explicitly justified, com-
pared with the alternative of simply showing the data with a 1D
list.

Lists have several strengths. First, they can show the maximal
amount of information, such as text labels, in minimal space. In
contrast, 2D layouts such as node–link representations of network
data require considerably more space to show the same number of
labels, so they have notably lower information density.

Second, lists are excellent for lookup tasks when they are or-
dered appropriately, for example in alphabetical order when the
goal is to find a known label. In contrast, finding a specific label
in a 2D node–link representation might require the user to hunt
around the entire layout, unless a specific search capability is built
into the vis tool.

When the task truly requires understanding the topological
structure of the network, then the benefits of showing those rela-
tionships explicitly outweigh the cost of the space required. How-
ever, some tasks are handled well by linear lists, even if the original
data has network structure.

6.5 Eyes Beat Memory

Using our eyes to switch between different views that are visible
simultaneously has much lower cognitive load than consulting our
memory to compare a current view with what was seen before.
Many interaction idioms implicitly rely on the internal use of mem-
ory and thus impose cognitive load on the viewer. Consider navi-
gation within a single view, where the display changes to show the
scene from a different viewpoint. Maintaining a sense of orienta-
tion implicitly relies on using internal resources, either by keeping
track of past navigation choices (for example, I zoomed into the
nucleus) or by remembering past views (for example, earlier all the
stock options in the tech sector were in the top corner of the view). In
contrast, having a small overview window with a rectangle within
it showing the position and size of the current camera viewport for
the main view is a way to show that information through an exter-
nal representation easily consulted by looking at that region of the
screen, so that it can be read off by the perceptual system instead
of remembered.

132 6. Rules of Thumb

6.5.1 Memory and Attention
Broadly speaking, people have two different categories of mem-
ory: long-term memory that can last a lifetime, versus short-term
memory that lasts several seconds, also known as working mem-
ory. While the capacity of long-term memory doesn’t have a strict
upper limit, human working memory is a very limited resource.
When these limits are reached, people experience cognitive load
and will fail to absorb all of the information that is presented.

Human attention also has severe limits. Conscious search for
items is an operation that grows more difficult with the number
of items there are to be checked. Vigilance is also a highly lim-
ited resource: our ability to perform visual search tasks degrades
quickly, with far worse results after several hours than in the first
few minutes.

6.5.2 Animation versus Side-by-Side Views
Some animation-based idioms also impose significant cognitive load
on the viewer because of implicit memory demands. Animation is
an overloaded word that can mean many different things consid-
ered through the lens of vis encoding and interaction. I distinguish
between these three definitions:

• narrative storytelling, as in popular movies;

• transitions from just one state to another;

• video-style playback of a multiframe sequence: play, pause,
stop, rewind, and step forward/back.

Some people have the intuition that because animation is a
powerful storytelling medium for popular movies, it should also be
suitable in a vis context. However, the situation is quite different.
Successful storytelling requires careful and deliberate choreogra-
phy to ensure that action is only occurring in one place at a time
and the viewer’s eyes have been guided to ensure that they are
looking in the right place. In contrast, a dataset animation might
have simultaneous changes in many parts of the view.

Animation is extremely powerful when used for transitions be-
tween two dataset configurations because it helps the user main-
tain context. There is considerable evidence that animated transi-
tions can be more effective than jump cuts, because they help peo-
ple track changes in object positions or camera viewpoints. These

6.5. Eyes Beat Memory 133

transitions are most useful when only a few things change; if the
number of objects that change between frames is large, people will
have a hard time tracking everything that occurs. We are blind
to changes in regions of the image that are not the focus of our
attention.

" Change blindness is cov-
ered in Section 6.5.3.

Although jump cuts are hard to follow when only seen once,
giving the user control of jumping back and forth between just two
frames can be effective for detecting whether there is a localized
change between two scenes. This blink comparator idiom was used
by the astronomer who found Pluto.

Finally, I consider animations as sequences of many frames,
where the viewer can control the playback using video-style con-
trols of play, pause, stop, rewind, and sometimes single-step for-
ward or backward frame by frame. I distinguish animation from
true interactive control, for example, navigation by flying through
a scene. With animation the user does not directly control what
occurs, only the speed at which the animation is played.

The difficulty of multiframe animations is that making compar-
isons between frames that do not adjoin relies on internal memory
of what previous frames looked like. If changes only occur in one
place at a time, the demands on attention and internal memory are
small. However, when many things change all over the frame and
there are many frames, we have a very difficult time in tracking
what happens. Giving people the ability to pause and replay the
animation is much better than only seeing it a single time straight
through, but that control does not fully solve the problem.

For tasks requiring detailed comparison across many frames,
seeing all the frames at once side by side can be more effective
than animation. The number of frames must be small enough
that the details within each can be discerned, so this approach
is typically suitable for dozens but not hundreds of frames with
current display resolutions. The action also should be segmented
into meaningful chunks, rather than keyframes that are randomly
chosen. Many vis idioms that use multiple views exploit this ob-
servation, especially small multiples.

" Small multiples are cov-
ered in Section 12.3.2.

6.5.3 Change Blindness
The human visual system works by querying the world around us
using our eyes. Our visual system works so well that most people
have the intuition that we have detailed internal memory of the
visual field that surrounds us. However, we do not. Our eyes dart
around, gathering information just in time for our need to use it, so

134 6. Rules of Thumb

quickly that we do not typically notice this motion at a conscious
level.

The phenomenon of change blindness is that we fail to notice
even quite drastic changes if our attention is directed elsewhere.
For example, experimenters set up a real-world interaction where
somebody was engaged by a stranger who asked directions, only
to be interrupted by people carrying a door who barged in between
them. The experimenters orchestrated a switch during this visual
interruption, replacing the questioner with another person. Re-
markably, most people did not notice, even when the new ques-
tioner was dressed completely differently—or was a different gen-
der than the old one!

Although we are very sensitive to changes at the focus of our
attention, we are surprisingly blind to changes when our attention
is not engaged. The difficulty of tracking complex and widespread
changes across multiframe animations is one of the implications of
change blindness for vis.

6.6 Resolution over Immersion

Pixels are precious: if you are faced with a trade-off between reso-
lution and immersion, resolution usually is far more important.

Immersive environments emphasize simulating realistic inter-
action and perception as closely as possible through technology
such as stereo imagery delivered separately to each eye to en-
hance depth perception, and full six-degree-of-freedom head and
position tracking so that the displays respond immediately to the
user’s physical motion of walking and moving the head around.
The most common display technology is head-mounted displays,
or small rooms with rear-projection displays on walls, floor, and
ceilings. Immersion is most useful when a sense of presence is
an important aspect of the intended task. With current display
hardware, there is a trade-off between resolution, the number of
available pixels divided by the display area, and immersion, the
feeling of presence in virtual reality. The price of immersion is
resolution; these displays cannot show as many pixels as state-
of-the-art desktop displays of the equivalent area. The number of
pixels available on a computer display is a limited resource that
is usually the most critical constraint in vis design. Thus, it is

" Display resolution con-
straints are discussed in
Section 1.13. extremely rare that immersion is worth the cost in resolution.

Another price of immersion is the integration of vis with the
rest of a user’s typical computer-based workflow. Immersive dis-

6.7. Overview First, Zoom and Filter, Details on Demand 135

play environments are almost always special-purpose settings that
are a different physical location than the user’s workspace, requir-
ing them to leave their usual office and go to some other location,
whether down the hall or in another building. In most cases users
stand rather than sit, so working for extended periods of time is
physically taxing compared with sitting at a desk. The most critical
problem is that they do not have access to their standard working
environment of their own computer system. Without access to the
usual input devices of mouse and keyboard, standard applications
such as web browsing, email reading, text and spreadsheet editing,
and other data analysis packages are completely unusable in most
cases, and very awkward at best. In contrast, a vis system that
fits into a standard desktop environment allows integration with
the usual workflow and fast task switching between vis and other
applications.

A compelling example of immersion is the use of virtual reality
for phobia desensitization; somebody with a fear of heights would
need a sense of presence in the synthetic environment in order to
make progress. However, this example is not an application of vis,
since the goal is to simulate reality rather than to visually encode
information. The most likely case where immersion would be help-
ful for vis is when the chosen abstraction includes 3D spatial data.
Even in this case, the designer should consider whether a sense of
presence is worth the penalties of lower resolution and no workflow
integration. It is very rare that immersion would be necessary for
nonspatial, abstract data. Using 3D for visual encoding of abstract
data is the uncommon case that needs careful justification. The

" The need for justifying 3D
for abstract data is covered
in Section 6.3.use of an immersive display in this case would require even more

careful justification.

6.7 Overview First, Zoom and Filter, Details
on Demand

Ben Shneiderman’s influential mantra of Overview First, Zoom and
Filter, Details on Demand [Shneiderman 96] is a heavily cited de-
sign guideline that emphasizes the interplay between the need for
overview and the need to see details, and the role of data reduction
in general and navigation in particular in supporting both.

A vis idiom that provides an overview is intended to give the
user a broad awareness of the entire information space. Using the
language of the what–why–how analysis framework, it’s an idiom

136 6. Rules of Thumb

with the goal of summarize. A common goal in overview design
is to show all items in the dataset simultaneously, without any
need for navigation to pan or scroll. Overviews help the user find
regions where further investigation in more detail might be produc-
tive. Overviews are often shown at the beginning of the exploration
process, to guide users in choosing where to drill down to inspect
in more detail. However, overview usage is not limited to initial
reconnaissance; it’s very common for users to interleave the use
of overviews and detail views by switching back and forth between
them many times.

When the dataset is sufficiently large, some form of reduce ac-
tion must be used in order to show everything at once. Overview
creation can be understood in terms of both filtering and aggre-
gation. A simple way to create overviews is by zooming out ge-
ometrically, so that the entire dataset is visible within the frame.
Each object is drawn smaller, with less room to show detail. In this
sense, overviews are created by removing all filtering: an overview
is created by changing from a zoomed-in view where some items
are filtered out, to a zoomed-out view where all items are shown.
When the number of items in a dataset is large enough, showing
an overview of the entire dataset in a single screen using one mark
per item is impossible, even if the mark size is decreased to a sin-
gle pixel. When the number of items to draw outstrips the number
of available pixels, the number of marks to show must be reduced
with aggregation. Moreover, even for datasets of medium size, ex-" Aggregation is discussed

in Section 13.4. plicitly designing an overview display using a more sophisticated
approach than simple geometric zooming can be fruitful. These
custom overviews are similar in spirit to semantic zooming, in that
the representation of the items is qualitatively different rather than
simply being drawn smaller than the full-detail versions. These

" Geometric and semantic
zooming are discussed in
Section 11.5. kinds of overviews often use dynamic aggregation that is implicitly

driven by navigation, rather than being explicitly chosen by the
user.

There is no crisp line dividing an “overview” from an “ordinary”
vis idiom, because many idioms provide some form of overview or
summary. However, it’s often useful to make a relative distinction
between a less detailed view that summarizes a lot of data and a
more detailed view that shows a smaller number of data items with
more information about each one. The former one is clearly the
overview, the latter one is the detail view. It’s particularly obvious
how to distinguish between these when the idiom design choice of
multiple views is being used; the mantra is particularly applicable
when the detail view pops up in response to a select action by the

6.8. Responsiveness Is Required 137

user, but it’s also common for the detail view to be permanently
visible side by side with the overview. There two other major fam-

" Chapter 12 covers multi-
ple views.

ilies of idioms that support overviewing. One is to use a single
view that dynamically changes over time by providing support for
reduce actions such as zooming and filtering; then that single view
sometimes acts as an overview and sometimes as a detail view. The

" Chapter 13 covers ap-
proaches to data reduction.

third choice is to embed both detailed focus and overview context
information together within a single view. " Chapter 14 covers fo-

cus+context idioms.This mantra is most helpful when dealing with datasets of mod-
erate size. When dealing with enormous datasets, creating a useful
overview for top-down exploration may not be feasible. In slogan
form, an alternative approach is Search, Show Context, Expand on
Demand [van Ham and Perer 09], where search results provide the
starting point for browsing of local neighborhoods.

6.8 Responsiveness Is Required

The latency of interaction, namely, how much time it takes for the
system to respond to the user action, matters immensely for inter-
action design. Our reaction to latency does not simply occur on a
continuum, where our irritation level gradually rises as things take
longer and longer. Human reaction to phenomena is best modeled
in terms of a series of discrete categories, with a different time
constant associated with each one. A system will feel responsive if
these latency classes are taken into account by providing feedback
to the user within the relevant time scale. The three categories
most relevant for vis designers are shown in Table 6.1.

The perceptual processing time constant of one-tenth of a sec-
ond is relevant for operations such as screen updates. The immedi-
ate response time constant of one second is relevant for operations
such as visual feedback showing what item that user has selected
with a mouse click, or the length of time for an animated transi-
tion from one layout to another. The brief task time constant of ten

Time Constant Value (in seconds)
perceptual processing 0.1
immediate response 1
brief tasks 10

Table 6.1. Human response to interaction latency changes dramatically at these
time thresholds. After [Card et al. 91, Table 3].

138 6. Rules of Thumb

seconds is relevant for breaking down complex tasks into simpler
pieces; a good granularity for the smallest pieces is this brief task
time.

6.8.1 Visual Feedback
From the user’s point of view, the latency of an interaction is
the time between their action and some feedback from the sys-
tem indicating that the operation has completed. In a vis system,
that feedback would most naturally be some visual indication of
state change within the system itself, rather than cumbersome ap-
proaches such as printing out status indications at the console or
a popup dialog box confirmation that would interfere with the flow
of exploration.

The most obvious principle is that the user should indeed have
some sort of confirmation that the action has completed, rather
than being left dangling wondering whether the action is still in
progress, or whether the action never started in the first place (for
example, because they missed the target and clicked on the back-
ground rather than the intended object). Thus, feedback such as
highlighting a selected item is a good way to confirm that the de-
sired operation has completed successfully. In navigation, feed-
back would naturally come when the user sees the new frame
is drawn from the changed viewpoint. Visual feedback should
typically take place within the immediate response latency class:
around one second.

Another principle is that if an action could take significantly
longer than a user would naturally expect, some kind of progress
indicator should be shown to the user. A good rule of thumb for
significantly longer is crossing from one latency class into another,
as shown in Table 6.1.

6.8.2 Latency and Interaction Design
Successful interaction design for a vis system depends on hav-
ing a good match between the latencies of the low-level interaction
mechanism, the visual feedback mechanism, the system update
time, and the cognitive load of operation itself.

For example, consider the operation of seeing more details for
an item and the latency difference between three different low-level
interaction mechanisms for doing so. Clicking on the item is slow-
est, because the user must move the mouse toward the target lo-
cation, stop the motion in the right place, and press down on the

6.8. Responsiveness Is Required 139

mouse. Mouseover hover, where the cursor is placed over the ob-
ject for some short period of dwell time but no click is required,
may or may not be faster depending on the dwell time. Mouseover
actions with no dwell time requirement, where the action is trig-
gered by the cursor simply crossing the object, are of course the
fastest because the second step is also eliminated and only the first
step needs to take place.

For visual feedback, consider three different mechanisms for
showing the information. One is showing the information on a
fixed detail pane at the side of the screen. In order to see the in-
formation, the user’s eyes need to move from the current cursor
location to the side of the screen, so this operation has relatively
high latency for making use of the visual feedback. On the other
hand, from a visual encoding point of view, an advantage is that
a lot of detail information can be shown without occluding any-
thing else in the main display. A second feedback mechanism is
a popup window at the current cursor location, which is faster to
use since there is no need to move the eyes away from tracking
the cursor. Since placing information directly in the view might oc-
clude other objects, there is a visual encoding cost to this choice. A
third mechanism is a visual highlight change directly in the view,
for instance by highlighting all neighbors within the graph that are
one hop from the graph node under the cursor through a color
change.

System update time is another latency to consider. With tiny
datasets stored completely locally, update time will be negligible
for any of these options. With larger datasets, the time to redraw
the entire view could be considerable unless the rendering⋆ frame- ⋆ The term rendering is

used in computer graphics
for drawing an image.

work has been designed to deliver frames at a guaranteed rate.
Similarly, scalable rendering frameworks can support fast update
for changing a few items or a small part of the display without re-
drawing the entire screen, but most graphics systems do not offer
this functionality by default. Thus, designing systems to guar-
antee immediate response to user actions can require significant
algorithmic attention. With distributed datasets, obtaining details
may require a round trip from the client to the server, possibly
taking several seconds on a congested network.

When systems are designed so that all of these latencies are
well matched, the user interacts fluidly and can stay focused on
high-level goals such as building an internal mental model of the
dataset. When there is a mismatch, the user is jarred out of a
state of flow [Csikszentmihalyi 91] by being forced to wait for the
system.

140 6. Rules of Thumb

6.8.3 Interactivity Costs
Interactivity has both power and cost. The benefit of interaction
is that people can explore a larger information space than can be
understood in a single static image. However, a cost to interaction
is that it requires human time and attention. If the user must
exhaustively check every possibility, use of the vis system may
degenerate into human-powered search. Automatically detecting
features of interest to explicitly bring to the user’s attention via the
visual encoding is a useful goal for the vis designer. However, if the
task at hand could be completely solved by automatic means, there
would be no need for a vis in the first place. Thus, there is always
a trade-off between finding automatable aspects and relying on the
human in the loop to detect patterns.

6.9 Get It Right in Black and White

Maureen Stone has advocated the slogan Get It Right in Black and
White as a design guideline for effective use of color [Stone 10].
That is, ensure that the most crucial aspects of visual represen-
tation are legible even if the image is transformed from full color
to black and white. Do so by literally checking your work in black
and white, either with image processing or by simply printing out a
screenshot on a black and white printer. This slogan suggests en-
coding the most important attribute with the luminance channel to
ensure adequate luminance contrast and considering the hue and
saturation channels as secondary sources of information.

" The principles of us-
ing color to visually encode
data are discussed in Sec-
tion 10.2. Figure 12.13
shows an example of ex-
plicitly checking luminance
contrast between elements
on different layers.

6.10 Function First, Form Next

The best vis designs should shine in terms of both form and func-
tion; that is, they should be both beautiful and effective. Neverthe-
less, in this book, I focus on function.

My rationale is that given an effective but ugly design, it’s possi-
ble to refine the form to make it more beautiful while maintaining
the base of effectiveness. Even if the original designer of the vis has
no training in graphic design, collaboration is possible with people
who do have that background.

In contrast, given a beautiful and ineffective design, you will
probably need to toss it out and start from scratch. Thus, I don’t
advocate a “form first” approach, because progressive refinement

6.11. Further Reading 141

is usually not possible. My argument mirrors the claims I made in
the first chapter about the size of the vis design space and the fact
that most designs are ineffective.

Equally important is the point that I don’t advocate “form never”:
visual beauty does indeed matter, given that vis makes use of hu-
man visual perception. Given the choice of two equally effective
systems, where one is beautiful and one is ugly, people will prefer
the better form. Moreover, good visual form enhances the effective-
ness of visual representations.

I don’t focus on teaching the principles and practice of graphic
design in this book because they are covered well by many other
sources. I focus on the principles of vis effectiveness because of
the lack of other resources.

6.11 Further Reading
No Unjustified 3D The differences between planar and depth spatial

perception and the characteristics of 3D depth cues are dis-
cussed at length in both of Ware’s books [Ware 08,Ware 13].
An in-depth discussion of the issues of 2D versus 3D [St. John
et al. 01] includes references to many previous studies in
the human factors and air traffic control literature including
the extensive work of Wickens. Several careful experiments
overturned previous claims of 3D benefits over 2D [Cockburn
and McKenzie 00,Cockburn and McKenzie 01,Cockburn and
McKenzie 04].

Memory Ware’s textbook is an excellent resource for memory and at-
tention as they relate to vis [Ware 13], with much more detail
than I provide here. A recent monograph contains an inter-
esting and thorough discussion of supporting and exploiting
spatial memory in user interfaces [Scarr et al. 13].

Animation An influential paper on incorporating the principles of
hand-drawn animation into computer graphics discusses the
importance of choreography to guide the viewer’s eyes during
narrative storytelling [Lasseter 87]. A meta-review of anima-
tion argues that many seemingly promising study results are
confounded by attempts to compare incommensurate situa-
tions; the authors find that small multiples are better than
animation if equivalent information is shown [Tversky et al. 02]
and the segmentation is carefully chosen [Zacks and Tver-
sky 03]. An empirical study found that while trend anima-

142 6. Rules of Thumb

tion was fast and enjoyable when used for presentation it did
lead to errors, and it was significantly slower than both small
multiples and trace lines for exploratory analysis [Robertson
et al. 08].

Change Blindness A survey paper is a good starting point for the
change blindness literature [Simons 00].

Overview, Zoom and Filter, Details on Demand This early and influen-
tial mantra about overviews is presented in a very readable
paper [Shneiderman 96]. More recently, a synthesis review
analyzes the many ways that overviews are used in infovis
[Hornbæk and Hertzum 11].

Responsiveness Is Required Card pioneered the discussion of latency
classes for vis and human–computer interaction [Card et al. 91];
an excellent book chapter covering these ideas appears in a
very accessible book on interface design [Johnson 10, Chap-
ter 12]. The costs of interaction are discussed in a synthesis
review [Lam 08] and a proposed framework for interaction [Yi
et al. 07].

Get It Right in Black and White A blog post on Get It Right in Black
and White is a clear and concise starting point for the topic
[Stone 10].

Function First, Form Next A very accessible place to start for basic
graphic design guidelines is The Non-Designer’s Design Book
[Williams 08].

This page intentionally left blankThis page intentionally left blank

Arrange Tables

Express Values

Separate, Order, Align Regions

Axis Orientation

Layout Density

Dense Space-Filling

Separate Order Align

1 Key 2 Keys 3 Keys Many Keys
List Recursive SubdivisionVolumeMatrix

Rectilinear Parallel Radial

Figure 7.1. Design choices for arranging tables.

Arrange Tables

Chapter 7

7.1 The Big Picture

Figure 7.1 shows the four visual encoding design choices for how
to arrange tabular data spatially. One is to express values. The
other three are to separate, order, and align regions. The spatial
orientation of axes can be rectilinear, parallel, or radial. Spatial
layouts may be dense, and they may be space-filling.

" A fifth arrangement
choice, to use a given spa-
tial layout, is not an option
for nonspatial information; it
is covered in Chapter 8.

7.2 Why Arrange?

The arrange design choice covers all aspects of the use of spatial
channels for visual encoding. It is the most crucial visual encod-
ing choice because the use of space dominates the user’s mental
model of the dataset. The three highest ranked effectiveness chan-
nels for quantitative and ordered attributes are all related to spatial
position: planar position against a common scale, planar position
along an unaligned scale, and length. The highest ranked effectiv-
ness channel for categorical attributes, grouping items within the
same region, is also about the use of space. Moreover, there are
no nonspatial channels that are highly effective for all attribute
types: the others are split into being suitable for either ordered
or categorical attributes, but not both, because of the principle of
expressiveness.

" The primacy of the spa-
tial position channels is dis-
cussed at length in Chap-
ter 5, as are the principles
of effectiveness and expres-
siveness.

7.3 Arrange by Keys and Values

The distinction between key and value attributes is very relevant to
visually encoding table data. A key is an independent attribute that
can be used as a unique index to look up items in a table, while a
value is a dependent attribute: the value of a cell in a table. Key

" See Section 2.6.1 for
more on keys and values.

attributes can be categorical or ordinal, whereas values can be all

145

146 7. Arrange Tables

three of the types: categorical, ordinal, or quantitative. The unique
values for a categorical or ordered attribute are called levels, to
avoid the confusion of overloading the term value.

The core design choices for visually encoding tables directly re-
late to the semantics of the table’s attributes: how many keys and
how many values does it have? An idiom could only show val-
ues, with no keys; scatterplots are the canonical example of show-
ing two value attributes. An idiom could show one key and one
value attribute; bar charts are the best-known example. An idiom
could show two keys and one value; for example, heatmaps. Idioms
that show many keys and many values often recursively subdivide
space into many regions, as with scatterplot matrices.

While datasets do only have attributes with value semantics,
it would be rare to visually encode a dataset that has only key
attributes. Keys are typically used to define a region of space for
each item in which one or more value attributes are shown.

7.4 Express: Quantitative Values

Using space to express quantitative attributes is a straightforward
use of the spatial position channel to visually encode data. The
attribute is mapped to spatial position along an axis.

In the simple case of encoding a single value attribute, each item
is encoded with a mark at some position along the axis. Additional
attributes might also be encoded on the same mark with other
nonspatial channels such as color and size. In the more complex
case, a composite glyph object is drawn, with internal structure
that arises from multiple marks. Each mark lies within a subregion
in the glyph that is visually encoded differently, so the glyph can
show multiple attributes at once.

" Glyphs and views are
discussed further in Sec-
tion 12.4.

Example: Scatterplots

The idiom of scatterplots encodes two quantitative value variables using
both the vertical and horizontal spatial position channels, and the mark
type is necessarily a point.

Scatterplots are effective for the abstract tasks of providing overviews
and characterizing distributions, and specifically for finding outliers and
extreme values. Scatterplots are also highly effective for the abstract task
of judging the correlation between two attributes. With this visual en-
coding, that task corresponds the easy perceptual judgement of noticing

7.4. Express: Quantitative Values 147

Figure 7.2. Scatterplot. Each point mark represents a country, with horizontal
and vertical spatial position encoding the primary quantitative attributes of life ex-
pectancy and infant mortality. The color channel is used for the categorical country
attribute and the size channel for quantitative population attribute. From [Robert-
son et al. 08, Figure 1c].

whether the points form a line along the diagonal. The stronger the cor-
relation, the closer the points fall along a perfect diagonal line; positive
correlation is an upward slope, and negative is downward. Figure 7.2
shows a highly negatively correlated dataset.

Additional transformations can also be used to shed more light on the
data. Figure 7.3(a) shows the relationship between diamond price and
weight. Figure 7.3(b) shows a scatterplot of derived attributes created
by logarithmically scaling the originals; the transformed attributes are
strongly positively correlated.

148 7. Arrange Tables

(a) (b)

Figure 7.3. Scatterplots. (a) Original diamond price/carat data. (b) Derived log-scale attributes are highly positively
correlated. From [Wickham 10, Figure 10].

When judging correlation is the primary intended task, the derived
data of a calculated regression line is often superimposed on the raw scat-
terplot of points, as in Figures 7.3(b) and 1.3.

Scatterplots are often augmented with color coding to show an addi-
tional attribute. Size coding can also portray yet another attribute; size-
coded scatterplots are sometimes called bubble plots. Figure 7.2 shows an
example of demographic data, plotting infant mortality on the vertical axis
against life expectancy on the horizontal axis.

The scalability of a scatterplot is limited by the need to distinguish
points from each other, so it is well suited for dozens or hundreds of items.

The table below summarizes this discussion in terms of a what–why–
how analysis instance. All of the subsequent examples will end with a
similar summary table.

Idiom Scatterplots
What: Data Table: two quantitative value attributes.

How: Encode Express values with horizontal and vertical spatial
position and point marks.

Why: Task Find trends, outliers, distribution, correlation; locate
clusters.

Scale Items: hundreds.

7.5. Separate, Order, and Align: Categorical Regions 149

7.5 Separate, Order, and Align:
Categorical Regions

The use of space to encode categorical attributes is more complex
than the simple case of quantitative attributes where the value
can be expressed with spatial position. Spatial position is an or-
dered magnitude visual channel, but categorical attributes have
unordered identity semantics. The principle of expressiveness
would be violated if they are encoded with spatial position.

The semantics of categorical attributes does match up well with
the idea of a spatial region: regions are contiguous bounded areas
that are distinct from each other. Drawing all of the items with the
same values for a categorical attribute within the same region uses
spatial proximity to encode the information about their similarity,
in a way that adheres nicely to the expressiveness principle. The
choice to separate into regions still leaves enormous flexibility in
how to encode the data within each region: that’s a different design
choice. However, these regions themselves must be given spatial
positions on the plane in order to draw any specific picture.

The problem becomes easier to understand by breaking down
the distribution of regions into three operations: separating into
regions, aligning the regions, and ordering the regions. The sepa-
ration and the ordering always need to happen, but the alignment
is optional. The separation should be done according to an at-
tribute that is categorical, whereas alignment and ordering should
be done by some other attribute that is ordered. The attribute
used to order the regions must have ordered semantics, and thus
it cannot be the categorical one that was used to do the separa-
tion. If alignment is done, the ordered attribute used to control the
alignment between regions is sometimes the same one that is used
to encode the spatial position of items within the region. It’s also
possible to use a different one.

7.5.1 List Alignment: One Key

With a single key, separating into regions using that key yields
one region per item. The regions are frequently arranged in a
one-dimensional list alignment, either horizontal or vertical. The
view itself covers a two-dimensional area: the aligned list of items
stretches across one of the spatial dimensions, and the region in
which the values are shown stretches across the other.

150 7. Arrange Tables

Example: Bar Charts

The well-known bar chart idiom is a simple initial example. Figure 7.4
shows a bar chart of approximate weights on the vertical axis for each
of three animal species on the horizontal axis. Analyzing the visual en-
coding, bar charts use a line mark and encode a quantitative value at-
tribute with one spatial position channel. The other attribute shown in
the chart, animal species, is a categorical key attribute. Each line mark
is indeed in a separate region of space, and there is one for each level of
the categorical attribute. These line marks are all aligned within a com-
mon frame, so that the highest-accuracy aligned position channel is used
rather than the lower-accuracy unaligned channel. In Figure 7.4(a) the
regions are ordered alphabetically by species name. Formally, the alpha-
betical ordering of the names should be considered a derived attribute.
This frequent default choice does have the benefit of making lookup by
name easy, but it often hides what could be meaningful patterns in the
dataset. Figure 7.4(b) shows this dataset with the regions ordered by the
values of the same value attribute that is encoded by the bar heights,
animal weight. This kind of data-driven ordering makes it easier to see
dataset trends. Bar charts are also well suited for the abstract task of
looking up individual values.

The scalability issues with bar charts are that there must be enough
room on the screen to have white space interleaved between the bar line
marks so that they are distinguishable. A bar corresponds to a level of the
categorical key attribute, and it’s common to show between several and
dozens of bars. In the limit, a full-screen chart with 1000 pixels could
handle up to hundreds of bars, but not thousands.

100

75

50

25

0

Animal Type

(a)

100

75

50

25

0

Animal Type

(b)

Figure 7.4. Bar chart. The key attribute, species, separates the marks along
the horizontal spatial axis. The value attribute, weight, expresses the value with
aligned vertical spatial position and line marks. (a) Marks ordered alphabetically
according to species name. (b) Marks ordered by the weight attribute used for bar
heights.

7.5. Separate, Order, and Align: Categorical Regions 151

Idiom Bar Charts
What: Data Table: one quantitative value attribute, one categori-

cal key attribute.
How: Encode Line marks, express value attribute with aligned ver-

tical position, separate key attribute with horizontal
position.

Why: Task Lookup and compare values.

Scale Key attribute: dozens to hundreds of levels.

Example: Stacked Bar Charts

A stacked bar chart uses a more complex glyph for each bar, where multiple
sub-bars are stacked vertically. The length of the composite glyph still
encodes a value, as in a standard bar chart, but each subcomponent also
encodes a length-encoded value. Stacked bar charts show information
about multidimensional tables, specifically a two-dimensional table with
two keys. The composite glyphs are arranged as a list according to a
primary key. The other secondary key is used in constructing the vertical
structure of the glyph itself. Stacked bar charts are an example of a list
alignment used with more than one key attribute. They support the task
of lookup according to either of the two keys.

Stacked bar charts typically use color as well as length coding. Each
subcomponent is colored according to the same key that is used to deter-
mine the vertical ordering; since the subcomponents are all abutted end
to end without a break and are the same width, they would not be dis-
tiguishable without different coloring. While it would be possible to use
only black outlines with white fill as the rectangles within a bar, com-
paring subcomponents across different bars would be considerably more
difficult.

Figure 7.5 shows an example of a stacked bar chart used to inspect
information from a computer memory profiler. The key used to distribute
composite bars along the axis is the combination of a processor and a
procedure. The key used to stack and color the glyph subcomponents is
the type of cache miss; the height of each full bar encodes all cache misses
for each processor–procedure combination.

Each component of the bar is separately stacked, so that the full bar
height shows the value for the combination of all items in the stack. The
heights of the lowest bar component and the full combined bar are both
easy to compare against other bars because they can be read off against
the flat baseline; that is, the judgement is position against a common
scale. The other components in the stack are more difficult to compare

152 7. Arrange Tables

Figure 7.5. Stacked bar chart. The Thor memory profiler shows cache misses
stacked and colored by miss type. From [Bosch 01, Figure 4.1].

across bars because their starting points are not aligned to a common
scale. Thus, the order of stacking is significant for the kinds of patterns
that are most easily visible, in addition to the ordering of bars across the
main axis, as with standard bar charts.

" Stacked bars are typi-
cally used for absolute data;
relative proportions of parts
to a whole can be shown
with a normalized stacked
bar chart, where each bar
shows the same information
as in an entire pie chart, as
discussed in Section 7.6.3.

The scalability of stacked bar charts is similar to standard bar charts
in terms of the number of categories in the key attribute distributed across
the main axis, but it is more limited for the key used to stack the subcom-
ponents within the glyph. This idiom works well with several categories,
with an upper limit of around one dozen.

7.5. Separate, Order, and Align: Categorical Regions 153

Idiom Stacked Bar Charts
What: Data Multidimensional table: one quantitative value at-

tribute, two categorical key attributes.
How: Encode Bar glyph with length-coded subcomponents of

value attribute for each category of secondary key
attribute. Separate bars by category of primary key
attribute.

Why: Task Part-to-whole relationship, lookup values, find
trends.

Scale Key attribute (main axis): dozens to hundreds of lev-
els. Key attribute (stacked glyph axis): several to one
dozen

Example: Streamgraphs

Figure 7.6 shows a more complex generalized stacked graph display idiom
with a dataset of music listening history, with one time series per artist
counting the number of times their music was listened to each week [By-
ron and Wattenberg 08]. The streamgraph idiom shows derived geometry
that emphasizes the continuity of the horizontal layers that represent the
artists, rather than showing individual vertical glyphs that would empha-
size listening behavior at a specific point in time.1 The derived geome-
try is the result of a global computation, whereas individual glyphs can
be constructed using only calculations about their own local region. The
streamgraph idiom emphasizes the legibility of the individual streams with
a deliberately organic silhouette, rather than using the horizontal axis as

Figure 7.6. Streamgraph of music listening history. From [Byron and Wattenberg 08, Figure 0].

1In this case, the main axis showing the quantitative time attribute is horizon-
tal; both streamgraphs and stacked bar charts can be oriented either vertically or
horizontally.

154 7. Arrange Tables

(a)

(b)

Figure 7.7. Streamgraphs with layers ordered by different derived attributes. (a)
Volatility of artist’s popularity. (b) Onset time when artist’s music of first gained
attention. From [Byron and Wattenberg 08, Figure 15].

the baseline. The shape of the layout is optimized as a trade-off between
multiple factors, including the external silhouette of the entire shape, the
deviation of each layer from the baseline, and the amount of wiggle in
the baseline. The order of the layers is computed with an algorithm that
emphasizes a derived value; Figure 7.7 shows the difference between sort-
ing by the volatility of the artist’s popularity, as shown in Figure 7.7(a),
and the onset time when they begin to gain attention, as shown in Fig-
ure 7.7(b).

Streamgraphs scale to a larger number of categories than stacked bar
charts, because most layers do not extend across the entire length of the
timeline.

Idiom Streamgraphs
What: Data Multidimensional table:

one quantitative value attribute (counts), one or-
dered key attribute (time), one categorical key at-
tribute (artist).

What: Derived One quantitative attribute (for layer ordering).

How: Encode Use derived geometry showing artist layers across
time, layer height encodes counts.

Scale Key attributes (time, main axis): hundreds of time
points. Key attributes (artists, short axis): dozens to
hundreds

7.5. Separate, Order, and Align: Categorical Regions 155

Example: Dot and Line Charts

The dot chart idiom is a visual encoding of one quantitative attribute using
spatial position against one categorical attribute using point marks, rather
than the line marks of a bar chart.⋆ Figure 7.8(a) shows a dot chart of cat ⋆ The terms dot chart

and dot plot are some-
times used as synonyms
and have been overloaded.
I use dot chart here for
the idiom popularized by
Cleveland [Becker et al. 96,
Cleveland and McGill 84a],
whereas Wilkinson [Wilkin-
son 99] uses dot plot for
an idiom that shows distri-
butions in a way similar to
the histograms discussed in
Section 13.4.1.

weight over time with the ordered variable of year on the horizontal axis
and the quantitative weight of a specific cat on the vertical axis.

One way to think about a dot chart is like a scatterplot where one
of the axes shows a categorical attribute, rather than both axes showing
quantitative attributes. Another way to think about a dot chart is like a
bar chart where the quantitative attribute is encoded with point marks
rather than line marks; this way matches more closely with its standard
use.

The idiom of line charts augments dot charts with line connection
marks running between the points. Figure 7.8(b) shows a line chart for
the same dataset side by side with the dot chart, plotting the weight of a
cat over several years. The trend of constantly increasing weight, followed
by loss after a veterinarian-imposed diet regime in 2010, is emphasized by
the connecting lines.

Idiom Dot Charts
What: Data Table: one quantitative value attribute, one ordered

key attribute.
How: Encode Express value attribute with aligned vertical position

and point marks. Separate/order into horizontal re-
gions by key attribute.

20

15

10

5

0

Year

(a)

20

15

10

5

0

Year

(b)

Figure 7.8. Line charts versus dot charts. (a) Dot charts use a point mark to
show the value for each item. (b) Line charts use point marks connected by lines
between them.

156 7. Arrange Tables

Idiom Line Charts
What: Data Table: one quantitative value attribute, one ordered

key attribute.
How: Encode Dot chart with connection marks between dots.

Why Show trend.

Scale Key attribute: hundreds of levels.

Line charts, dot charts, and bar charts all show one value at-
tribute and one key attribute with a rectilinear spatial layout. All of
these chart types are often augmented to show a second categori-
cal attribute using color or shape channels. They use one spatial
position channel to express a quantitative attribute, and use the
other direction for a second key attribute. The difference is that
line charts also use connection marks to emphasize the ordering
of the items along the key axis by explicitly showing the relation-
ship between one item and the next. Thus, they have a stronger
implication of trend relationships, making them more suitable for
the abstract task of spotting trends.

Line charts should be used for ordered keys but not categor-
ical keys. A line chart used for categorical data violates the ex-
pressiveness principle, since it visually implies a trend where one
cannot exist. This implication is so strong that it can override
common knowledge. Zacks and Tversky studied how people an-
swered questions about the categorical data type of gender versus
the quantitative data type of age, as shown in Figure 7.9 [Zacks and
Tversky 99]. Line charts for quantitative data elicited appropriate
trend-related answers, such as “Height increases with age”. Bar
charts for quantitative data elicited equally appropriate discrete-
comparison answers such as “Twelve year olds are taller than ten
year olds”. However, line charts for categorical data elicited inap-
propriate trend answers such as “The more male a person is, the
taller he/she is”.

When designing a line chart, an important question to consider
is its aspect ratio: the ratio of width to height of the entire plot.
While many standard charting packages simply use a square or
some other fixed size, in many cases this default choice hides data-
set structure. The relevant perceptual principle is that our ability
to judge angles is more accurate at exact diagonals than at arbi-
trary directions. We can easily tell that an angle like 43◦ is off from
the exact 45◦ diagonal, whereas we cannot tell 20◦ from 22◦. The

7.5. Separate, Order, and Align: Categorical Regions 157

Female Male

60

50

40

30

20

10

0
Female Male

60

50

40

30

20

10

0

10-year-olds 12-year-olds

60

50

40

30

20

10

0

60

50

40

30

20

10

0
10-year-olds 12-year-olds

Figure 7.9. Bar charts and line charts both encode a single attribute. Bar charts
encourage discrete comparisons, while line graphs encourage trend assessments.
Line charts should not be used for categorical data, as in the upper right, because
their implications are misleading. After [Zacks and Tversky 99, Figure 2].

idiom of banking to 45◦ computes the best aspect ratio for a chart
in order to maximize the number of line segments that fall close
to the diagonal. Multiscale banking to 45◦ automatically finds a
set of informative aspect ratios using techniques from signal pro-
cessing to analyze the line graph in the frequency domain, with
the derived variable of the power spectrum. Figure 7.10 shows the
classic sunspot example dataset. The aspect ratio close to 4 in
Figure 7.10(a) shows the classic low-frequency oscillations in the
maximum values of each sunspot cycle. The aspect ratio close to
22 in Figure 7.10(b) shows that many cycles have a steep onset
followed by a more gradual decay. The blue line graphs the data
itself, while the red line is the derived locally weighted regression
line showing the trend.

7.5.2 Matrix Alignment: Two Keys

Datasets with two keys are often arranged in a two-dimensional
matrix alignment where one key is distributed along the rows and

158 7. Arrange Tables

(a)

(b)

Figure 7.10. Sunspot cycles. The multiscale banking to 45◦ idiom exploits our
orientation resolution accuracy at the diagonal. (a) An aspect ratio close to 4
emphasizes low-frequency structure. (b) An aspect ratio close to 22 shows higher-
frequency structure: cycle onset is mostly steeper than the decay. From [Heer and
Agrawala 06, Figure 5].

the other along the columns, so a rectangular cell in the matrix is
the region for showing the item values.

Example: Cluster Heatmaps

The idiom of heatmaps is one of the simplest uses of the matrix alignment:
each cell is fully occupied by an area mark encoding a single quantitative
value attribute with color. Heatmaps are often used with bioinformat-
ics datasets. Figure 7.11 shows an example where the keys are genes
and experimental conditions, and the quantitative value attribute is the
activity level of a particular gene in a particular experimental condition
as measured by a microarray. This heatmap uses a diverging red–green
colormap, as is common in the genomics domain. (In this domain there
is a strong convention for the meaning of red and green that arose from
raw images created by the optical microarray sensors that record fluores-
cence at specific wavelengths. Unfortunately, this choice causes problems
for colorblind users.) The genes are a categorical attribute; experimental

" See Section 10.3 for
more on colormap design
and Section 10.3.4 for
the particular problem of
colorblind-safe design.

conditions might be categorical or might be ordered, for example if the
experiments were done at successive times.

The benefit of heatmaps is that visually encoding quantitative data
with color using small area marks is very compact, so they are good for

7.5. Separate, Order, and Align: Categorical Regions 159

E217S299R783
E217S299R784
E217S300R787
E217S300R786
E217S300R785
E217S299R782
E111S150R567

E199S255R449
E199S255R448
E199S255R450

E202S185R546
E202S196R564

E202S192R557

E202S188R552

E202S185R545
E111S150R568

E202S190R553
E111S150R566
E144S184R737
E202S186R548
E202S186R549
E202S186R547
E202S192R556

E144S184R738
E202S196R562
E202S194R560

E202S188R550
E202S192R558

E202S190R554

E202S185R544

E202S196R563
E202S188R551

E202S194R559
E189S232R190
E189S232R386 1452475_at

1424605_at
1421396_at

1459124_at

1426981_at

1448312_at

1437339_s_at
1438248_at

1444147_at

1437453_s_at

1416965_at
1447991_at

1448240_at

1418518_at

1447992_s_at
1428305_at

1431386_s_at

1431385_a_at

1425824_a_at

E202S194R561
E202S190R555

Figure 7.11. Cluster heatmap. A heatmap provides a compact summary of a
quantitative value attribute with 2D matrix alignment by two key attributes and small
area marks colored with a diverging colormap. The cluster heatmap includes trees
drawn on the periphery showing how the matrix is ordered according to the derived
data of hierarchical clusterings on its rows and columns.

providing overviews with high information density. The area marks in a
heatmap are often several pixels on a side for easy distinguishability, so
a matrix of 200 × 200 with 40,000 items is easily handled. The limit
is area marks of a single pixel, for a dense heatmap showing one million
items. Thus, the scalability limits are hundreds of levels for each of the two
categorical key attributes. In contrast, only a small number of different
levels of the quantitative attribute can be distinguishable, because of the
limits on color perception in small noncontiguous regions: between 3 and
11 bins.2

2Again, all of the scalability analyses in this book related to screen-space limits
assume a standard display size of 1000 × 1000, for a total of one million available
pixels.

160 7. Arrange Tables

The cluster heatmap idiom combines the basic heatmap with matrix
reordering, where two attributes are reordered in combination.⋆ The goal

⋆ There are many syn-
onyms for matrix reorder-
ing, including matrix per-
mutation, seriation, ordi-
nation, biclustering, co-
clustering, and two-mode
clustering. Matrix re-
ordering has been studied
in many different literatures
beyond vis including car-
tography, statistics, opera-
tions research, data min-
ing, bioinformatics, ecology,
psychology, sociology, and
manufacturing.

of matrix reordering is to group similar cells in order to check for large-
scale patterns between both attributes, just as the goal of reordering a
single attribute is to see trends across a single one.

A cluster heatmap is the juxtaposed combination of a heatmap and two
dendrograms showing the derived data of the cluster hierarchies used in
the reodering. A cluster hierarchy encapsulates the complete history of
how a clustering algorithm operates iteratively. Each leaf represents a
cluster of a single item; the interior nodes record the order in which clus-
ters are merged together based on similarity, with the root representing
the single cluster of all items. A dendrogram is a visual encoding of tree
data with the leaves aligned so that the interior branch heights are easy to
compare. The final order used for the rows and the columns of the matrix
view is determined by traversing the leaves in the trees.

" Hierarchical clustering is
further discussed in Sec-
tion 13.4.1.

Idiom Heatmaps
What: Data Table: two categorical key attributes (genes, condi-

tions), one quantitative value attribute (activity level
for gene in condition).

How: Encode 2D matrix alignment of area marks, diverging color-
map.

Why: Task Find clusters, outliers; summarize.

Scale Items: one million. Categorical attribute levels: hun-
dreds. Quantitative attribute levels: 3–11.

Idiom Cluster Heatmaps
What: Derived Two cluster hierarchies for table rows and columns.

How: Encode Heatmap: 2D matrix alignment, ordered by both
cluster hierarchies. Dendrogram: connection line
marks for parent–child relationships in tree.

Example: Scatterplot Matrix

A scatterplot matrix (SPLOM) is a matrix where each cell contains an en-
tire scatterplot chart. A SPLOM shows all possible pairwise combinations
of attributes, with the original attributes as the rows and columns. Fig-
ure 15.2 shows an example. In contrast to the simple heatmap matrix
where each cell shows one attribute value, a SPLOM is an example of a
more complex matrix where each cell shows a complete chart.

" SPLOMS are an example
of small-multiple views, as
discussed in Section 12.3.2.

The key is a simple derived attribute that is the same for both the rows
and the columns: an index listing all the attributes in the original dataset.
The matrix could be reordered according to any ordered attribute. Usually

7.5. Separate, Order, and Align: Categorical Regions 161

only the lower or upper triangle of the matrix is shown, rather than the
redundant full square. The diagonal cells are also typically omitted, since
they would show the degenerate case of an attribute plotted against itself,
so often labels for the axes are shown in those cells.

SPLOMs are heavily used for the abstract tasks of finding correlations,
trends, and outliers, in keeping with the usage of their constituent scat-
terplot components.

Each scatterplot cell in the matrix requires enough room to plot a dot
for each item discernably, so around 100 × 100 pixels is a rough lower
bound. The scalability of a scatterplot matrix is thus limited to around
one dozen attributes and hundreds of items.

" Many extensions to
SPLOMs have been pro-
posed, including the scag-
nostics idiom using derived
attributes described in Sec-
tion 15.3 and the compact
heatmap-style overview
described in Section 15.5.

Idiom Scatterplot Matrix (SPLOM)
What: Data Table.

What: Derived Ordered key attribute: list of original attributes.

How: Encode Scatterplots in 2D matrix alignment.

Why: Task Find correlation, trends, outliers.

Scale Attributes: one dozen.
Items: dozens to hundreds.

7.5.3 Volumetric Grid: Three Keys
Just as data can be aligned in a 1D list or a 2D matrix, it is pos-
sible to align data in three dimensions, in a 3D volumetric grid.
However, this design choice is typically not recommended for non-
spatial data because it introduces many perceptual problems, in-
cluding occlusion and perspective distortion. An alternative choice

" The rationale for avoid-
ing the unjustified use of 3D
for nonspatial data is dis-
cussed in Section 6.3.for spatial layout for multidimensional tables with three keys is

recursive subdivision, as discussed below.

7.5.4 Recursive Subdivision: Multiple Keys
With multiple keys, it’s possible to extend the above approaches
by recursively subdividing the cell within a list or matrix. That is,
ordering and alignment is still used in the same way, and contain-
ment is added to the mix.

There are many possibilities of how to partition data into sepa-
rate regions when dealing with multiple keys. These design choices
are discussed in depth in Section 12.4.

162 7. Arrange Tables

7.6 Spatial Axis Orientation
An additional design choice with the use of space is how to ori-
ent the spatial axes: whether to use rectilinear, parallel, or radial
layout.

7.6.1 Rectilinear Layouts
In a rectilinear layout, regions or items are distributed along two
perpendicular axes, horizontal and vertical spatial position, that
range from minimum value on one side of the axis to a maximum
value on the other side. Rectilinear layouts are heavily used in vis
design and occur in many common statistical charts. All of the
examples above use rectilinear layouts.

7.6.2 Parallel Layouts
The rectilinear approach of a scatterplot, where items are plotted
as dots with respect to perpendicular axes, is only usable for two
data attributes when high-precision planar spatial position is used.
Even if the low-precision visual channel of a third spatial dimen-
sion is used, then only three data attributes can be shown using
spatial position channels. Although additional nonspatial chan-

" The potential drawbacks
of using three spatial di-
mensions for abstract data
are discussed in Section 6.3.

nels can be used for visual encoding, the problem of channel in-
separability limits the number of channels that can be combined
effectively in a single view. Of course, many tables contain far more

" The issue of separable
versus integral channels is
covered in Section 5.5.3. than three quantitative attributes.

Example: Parallel Coordinates

The idiom of parallel coordinates is an approach for visualizing many quan-
titative attributes at once using spatial position. As the name suggests,
the axes are placed parallel to each other, rather than perpendicularly at
right angles. While an item is shown with a dot in a scatterplot, with par-
allel coordinates a single item is represented by a jagged line that zigzags
through the parallel axes, crossing each axis exactly once at the location of
the item’s value for the associated attribute.⋆ Figure 7.12 shows an exam-⋆ In graphics terminology,

the jagged line is a poly-
line: a connected set of
straight line segments.

ple of the same small data table shown both as a SPLOM and with parallel
coordinates.

One original motivation by the designers of parallel coordinates was
that they can be used for the abstract task of checking for correlation be-
tween attributes. In scatterplots, the visual pattern showing correlation
is the tightness of the diagonal pattern formed by the item dots, tilting

7.6. Spatial Axis Orientation 163

Math

Physics

Dance

Drama

Math Physics Dance Drama

Math Physics Dance Drama

100
90
80
70
60
50
40
30
20
10

0

Math Physics Dance Drama

85
90
65
50
40

95
80
50
40
60

70
60
90
95
80

65
50
90
80
90

Table Scatterplot Matrix Parallel Coordinates

Figure 7.12. Comparison of scatterplot matrix and parallel coordinate idioms for a small data table. After [McGuf-
fin 14].

upward for positive correlation and downward for negative correlation.
If the attributes are not correlated, the points fall throughout the two-
dimensional region rather than tightly along the diagonal. With parallel
coordinates, correlation is also visible, but through different kinds of vi-
sual patterns, as illustrated in Figure 7.13. If two neighboring axes have
high positive correlation, the line segments are mostly parallel. If two axes
have high negative correlation, the line segments mostly cross over each
other at a single spot between the axes. The pattern in between uncorre-
lated axes is a mix of crossing angles.

However, in practice, SPLOMs are typically easier to use for the task
of finding correlation. Parallel coordinates are more often used for other
tasks, including overview over all attributes, finding the range of individual
attributes, selecting a range of items, and outlier detection. For example,
in Figure 7.14(a), the third axis, labeled manu wrkrs, has a broad range
nearly to the normalized limits of 628.50 and 441.50, whereas the range of
values on the sixth axis, labeled cleared, is more narrow; the top item on
the fourth axis, labeled handgun lc, appears to be an outlier with respect
to that attribute.

Parallel coordinates visually encode data using two dimensions of spa-
tial position. Of course, any individual axis requires only one spatial di-
mension, but the second dimension is used to lay out multiple axes. The
scalability is high in terms of the number of quantitative attribute val-
ues that can be discriminated, since the high-precision channel of planar
spatial position is used. The exact number is roughly proportional to the
screen space extent of the axes, in pixels. The scalability is moderate in

164 7. Arrange Tables

Figure 7.13. Parallel coordinates were designed to show correlation between
neighboring axes. At the top, parallel lines show perfect positive correlation. At
the bottom, all of the lines cross over each other at a single spot in between the
two axes, showing perfect negative correlation. In the middle, the mix of crossings
shows uncorrelated data. From [Wegman 90, Figure 3].

terms of number of attributes that can be displayed: dozens is common.
As the number of attributes shown increases, so does the width required
to display them, so a parallel coordinates display showing many attributes
is typically a wide and flat rectangle. Assuming that the axes are vertical,
then the amount of vertical screen space required to distinguish position
along them does not change, but the amount of horizontal screen space
increases as more axes are added. One limit is that there must be enough
room between the axes to discern the patterns of intersection or paral-
lelism of the line segments that pass between them.

The basic parallel coordinates idiom scales to showing hundreds of
items, but not thousands. If too many lines are overplotted, the resulting
occlusion yields very little information. Figure 7.14 contrasts the idiom
used successfully with 13 items and 7 attributes, as in Figure 7.14(a),
versus ineffectively with over 16,000 items and 5 attributes, as in Fig-
ure 7.14(b). In the latter case, only the minimum and maximum values
along each axis can be read; it is nearly impossible to see trends, anoma-
lies, or correlations.

" Section 13.4.1 covers
scaling to larger datasets
with hierarchical parallel co-
ordinates.

The patterns made easily visible by parallel coordinates have to do
with the pairwise relationships between neighboring axes. Thus, the cru-

7.6. Spatial Axis Orientation 165

(a) (b)

Figure 7.14. Parallel coordinates scale to dozens of attributes and hundreds of items, but not to thousands of items.
(a) Effective use with 13 items and 7 attributes. (b) Ineffective use with over 16,000 items and 5 attributes. From [Fua
et al. 99, Figures 1 and 2].

cial limitation of parallel coordinates is how to determine the order of the
axes. Most implementations allow the user to interactively reorder the
axes. However, exploring all possible configurations of axes through sys-
tematic manual interaction would be prohibitively time consuming as the
number of axes grows, because of the exploding number of possible com-
binations.

Another limitation of parallel coordinates is training time; first-time
users do not have intuitions about the meaning of the patterns they see,
which must thus be taught explicitly. Parallel coordinates are often used
in one of several multiple views showing different visual encodings of the
same dataset, rather than as the only encoding. The combination of more

" Multiple view design
choices are discussed in
Sections 12.3 and 12.4.

familiar views such as scatterplots with a parallel coordinates view accel-
erates learning, particularly since linked highlighting reinforces the map-
ping between the dots in the scatterplots and the jagged lines in the par-
allel coordinates view.

166 7. Arrange Tables

Idiom Parallel Coordinates
What: Data Table: many value attributes.

How: Encode Parallel layout: horizontal spatial position used to
separate axes, vertical spatial position used to ex-
press value along each aligned axis with connection
line marks as segments between them.

Why: Tasks Find trends, outliers, extremes, correlation.

Scale Attributes: dozens along secondary axis.
Items: hundreds.

7.6.3 Radial Layouts
In a radial spatial layout, items are distributed around a circle
using the angle channel in addition to one or more linear spatial
channels, in contrast to the rectilinear layouts that use only two
spatial channels.

The natural coordinate system in radial layouts is polar coor-
dinates, where one dimension is measured as an angle from a
starting line and the other is measured as a distance from a cen-
ter point. Figure 7.15 compares polar coordinates, as shown in
Figure 7.15(a), with standard rectilinear coordinates, as shown in
Figure 7.15(b). From a strictly mathematical point of view, rec-
tilinear and radial layouts are equivalent under a particular kind
of transformation: a box bounded by two sets of parallel lines is
transformed into a disc where one line is collapsed to a point at
the center and the other line wraps around to meet up with itself,
as in Figure 7.15(c).

However, from a perceptual point of view, rectilinear and ra-
dial layouts are not equivalent at all. The change of visual chan-
nel has two major consequences from visual encoding principles
alone. First, the angle channel is less accurately perceived than a
rectilinear spatial position channel. Second, the angle channel is
inherently cyclic, because the start and end point are the same, as
opposed to the inherently linear nature of a position channel.⋆ The⋆ In mathematical lan-

guage, the angle channel is
nonmonotonic.

expressiveness and effectiveness principles suggest some guide-
lines on the use of radial layouts. Radial layouts may be more ef-
fective than rectilinear ones in showing the periodicity of patterns,
but encoding nonperiodic data with the periodic channel of angle

7.6. Spatial Axis Orientation 167

10

2

4

6

8

5

1

2

3

4

(a)

5

1

2

3

4

102 4 6 8

(b) (c)

Figure 7.15. Layout coordinate systems. (a) Radial layouts use polar coordinates,
with one spatial position and one angle channel. (b) Rectlinear layouts use two
perpendicular spatial position channels. After [Wickham 10, Figure 8]. (c) Trans-
forming rectilinear to radial layouts maps two parallel bounding lines to a point at
the center and a circle at the perimeter.

may be misleading. Radial layouts imply an asymmetry of impor-
tance between the two attributes and would be inappropriate when
the two attributes have equal importance.

Example: Radial Bar Charts

The same five-attribute dataset is encoded with a rectilinear bar chart in
Figure 7.16(a) and with a radial alternative in Figure 7.16(b). In both
cases, line marks are used to encode a quantitative attribute with the
length channel, and the only difference is the radial versus the rectilinear
orientation of the axes.

(a) (b)

Figure 7.16. Radial versus rectilinear layouts. (a) Rectilinear bar chart. (b) Radial
bar chart. After [Booshehrian et al. 11, Figure 4].

168 7. Arrange Tables

Idiom Radial Bar Charts
What: Data Table: one quantitative attribute, one categorical at-

tribute.
How: Encode Length coding of line marks; radial layout.

Example: Pie Charts

The most commonly used radial statistical graphic is the pie chart, shown
in Figure 7.17(a). Pie charts encode a single attribute with area marks
and the angle channel. Despite their popularity, pie charts are clearly
problematic when considered according to the visual channel properties
discussed in Section 5.5. Angle judgements on area marks are less ac-
curate than length judgements on line marks. The wedges vary in width
along the radial axis, from narrow near the center to wide near the outside,
making the area judgement particularly difficult. Figure 7.17(b) shows a
bar chart with the same data, where the perceptual judgement required to
read the data is the high-accuracy position along a common scale channel.
Figure 7.17(c) shows a third radial chart that is a more direct equivalent of
a bar chart transformed into polar coordinates. The polar area chart also
encodes a single quantitative attribute but varies the length of the wedge
just as a bar chart varies the length of the bar, rather than varying the
angle as in a pie chart.⋆ The data in Figure 7.17 shows the clarity dis-

⋆ Synonyms for polar area
chart are rose plot and
coxcomb plot; these were
first popularized by Flo-
rence Nightingale in the
19th century in her analy-
sis of Crimean war medical
data.

tribution of diamonds, where I1 is worst and IF is best. These instances
redundantly encode each mark with color for easier legibility, but these
idioms could be used without color coding.

(a) (b) (c)

Figure 7.17. Pie chart versus bar chart accuracy. (a) Pie charts require angle and area judgements. (b) Bar charts
require only high-accuracy length judgements for individual items. (c) Polar area charts are a more direct equivalent
of bar charts, where the length of each wedge varies like the length of each bar. From [Wickham 10, Figures 15
and 16].

7.6. Spatial Axis Orientation 169

<5

5-13

14-17

18-24

25-44

45-64

≥65

(a)

UT TX ID AZ NV GA AK MSNMNE CA OKSD COKS WYNC AR LA IN IL MN DE HI SCMOVA IA TN KY AL WAMD NDOH WI OR NJ MT MI FL NY DC CT PA MAWV RI NHME VT
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Under 5 Years

5 to 13 Years

14 to 17 Years

18 to 24 Years

25 to 44 Years

45 to 64 Years

65 Years and Over

(b)

CA TX NY FL IL PA OH MI GA NC NJ VA WA AZ MA IN TN MO MD WI MN CO AL SC LA KY OR OK CT IA MS AR KS UT NV NM WV NE ID ME NH HI RI MT DE SD AK ND VT DC WY
0.0

5.0M

10M

15M

20M

25M

30M

35M

P
op

ul
at

io
n

65 Years and Over

45 to 64 Years

25 to 44 Years

18 to 24 Years

14 to 17 Years

5 to 13 Years

Under 5 Years

(c)

Figure 7.18. Relative contributions of parts to a whole. (a) A single pie chart shows the relative contributions of
parts to a whole, such as percentages, using area judgements. (b) Each bar in a normalized stacked bar chart
also shows the relative contributions of parts to a whole, with a higher-accuracy length encoding. (c) A stacked bar
chart shows the absolute counts in each bar, in contrast to the percentages when each bar is normalized to the
same vertical length. From http://bl.ocks.org/mbostock/3887235, http://bl.ocks.org/mbostock/3886208, http://bl.ocks.
org/mbostock/3886394.

The most useful property of pie charts is that they show the relative
contribution of parts to a whole. The sum of the wedge angles must add
up to the 360◦ of a full circle, matching normalized data such as percent-
ages where the parts must add up to 100%. However, this property is
not unique to pie charts; a single bar in a normalized stacked bar chart
can also be used to show this property with the more accurate channel
of length judgements. A stacked bar chart uses a composite glyph made
of stacking multiple sub-bars of different colors on top of each other; a
normalized stacked bar chart stretches each of these bars to the maximum
possible length, showing percentages rather than absolute counts. Only
the lowest sub-bar in a stacked bar chart is aligned with the others in
its category, allowing the very highest accuracy channel of position with
respect to a common frame to be used. The other sub-bars use unaligned
position, a channel that is less accurate than aligned position, but still
more accurate than angle comparisons.

" Stacked glyphs are
discussed further in Sec-
tion 7.5.1.

Figure 7.18 compares a single pie chart showing aggregate population
data for the entire United States to a normalized stacked bar chart and a
stacked bar chart for all 50 states. An entire pie chart corresponds to a
single bar in these charts; an equivalent display would be a list or matrix
of pies.

Pie charts require somewhat more screen area than normalized stacked
bar charts because the angle channel is lower precision than the length
channel. The aspect ratio also differs, where a pie chart requires a square,
whereas a bar chart requires a long and narrow rectangle. Both pie charts
and normalized stacked bar charts are limited to showing a small number
of categories, with a maximum of around a dozen categories.

170 7. Arrange Tables

Idiom Pie Charts
What: Data Table: one quantitative attribute, one categorical at-

tribute.
Why: Task Part–whole relationship.

How: Encode Area marks (wedges) with angle channel; radial lay-
out.

Scale One dozen categories.

Idiom Polar Area Charts
What: Data Table: one quantitative attribute, one categorical at-

tribute.
Why: Task Part–whole relationship.

How: Encode Area marks (wedges) with length channel; radial lay-
out.

Scale One dozen categories.

Idiom Normalized Stacked Bar Charts
What: Data Multidimensional table: one quantitative value at-

tribute, two categorical key attributes.
What: Derived One quantitative value attribute (normalized version

of original attribute).
Why: Task Part–whole relationship.

How: Encode Line marks with length channel; rectilinear layout.

Scale One dozen categories for stacked attribute. Several
dozen categories for axis attribute.

Figure 7.19 compares rectilinear and radial layouts for 12 iconic
time-series datasets: linear increasing, decreasing, shifted, single
peak, single dip, combined linear and nonlinear, seasonal trends
with different scales, and a combined linear and seasonal trend
[Wickham et al. 12]. The rectilinear layouts in Figure 7.19(a) are
more effective at showing the differences between the linear and
nonlinear trends, whereas the radial plots Figure 7.19(b) are more
effective at showing cyclic patterns.

A first empirical study on radial versus rectilinear grid layouts
by Diehl et al. focused on the abstract task of memorizing positions
of objects for a few seconds [Diehl et al. 10]. They compared perfor-
mance in terms of accuracy and speed for rectilinear grids of rows
and columns versus radial grids of sectors and rows. (The study
did not investigate the effect of periodicity.) In general, rectilinear

7.7. Spatial Layout Density 171

(a)

(b)

Figure 7.19. Glyphmaps. (a) Rectilinear layouts are more effective at showing
the differences between linear and nonlinear trends. (b) Radial layouts are more
effective at showing cyclic patterns. From [Wickham et al. 12, Figure 3].

layouts outperformed radial layouts: perception speed was faster,
and accuracy tended to be better. However, their results also sug-
gest the use of radial layouts can be justified when one attribute is
more important than the other. In this case, the more important
attribute should be encoded in the sectors and the less important
attribute in the rings.

7.7 Spatial Layout Density

Another design choice with spatial visual encoding idioms is whether
a layout is dense or sparse. A related, but not identical, choice is
whether a layout is space-filling.

172 7. Arrange Tables

7.7.1 Dense
A dense layout uses small and densely packed marks to provide an
overview of as many items as possible with very high information
density.⋆ A maximally dense layout has point marks that are only⋆ A synonym for dense is

pixel-oriented. a single pixel in size and line marks that are only a single pixel in
width. The small size of the marks implies that only the planar
position and color channels can be used in visual encoding; size
and shape are not available, nor are others like tilt, curvature, or
shape that require more room than is available.

Section 15.4 presents a detailed case study of VisDB, a dense
display for multidimensional tables using point marks.

Example: Dense Software Overviews

Figure 7.20 shows the Tarantula system, a software engineering tool for
visualizing test coverage [Jones et al. 02]. Dense displays using line marks
have become popular for showing overviews of software source code. In
these displays, the arrangement of the marks is dictated by the order
and length of the lines of code, and the coloring of the lines encodes an
attribute of interest.

Most of the screen is devoted to a large and dense overview of source
code using one-pixel tall lines, color coded to show whether it passed,
failed, or had mixed results when executing a suite of test cases. Al-
though of course the code is illegible in the low-resolution overview, this
view does convey some information about the code structure. Indenta-
tion and line length are preserved, creating visible landmarks that help
orient the reader. The layout wraps around to create multiple horizontal
columns out of a single long linear list. The small source code view in
the lower left corner is a detail view showing a few lines of source code at
a legible size; that is, a high-resolution view with the same color coding
and same spatial position. The dense display scales to around ten thou-
sand lines of code, handling around one thousand vertical pixels and ten
columns.

The dataset used by Tarantula is an interesting complex combination
of the software source code, the test results, and derived data. The orig-
inal dataset is the software source code itself. Software code is highly
structured text that is divided into numbered lines and has multiscale hi-
erarchical structure with divisions into units such as packages, files, and
methods. Most complex tasks in the software engineering domain require
reading snippets of code line by line in the order that they were written by
the programmer as a subtask, so changing or ignoring the order of lines
within a method would not be an appropriate transformation. However,
it’s common with software engineering tasks that only a small number of
the many units in a software project need to be read at any given time.

7.7. Spatial Layout Density 173

Figure 7.20. Tarantula shows a dense overview of source code with lines color coded by execution status of a
software test suite. From [Jones et al. 02, Figure 4].

The design choice of a dense overview to provide orientation and a detail
view where a small amount of text is shown legibly is thus reasonable.

" The overview and detail
choice for multiple views is
covered in Section 12.3.The original dataset also includes the tests, where each test has the

categorical attribute of test or fail and is associated with a set of specific
lines of the source code. Tarantula computes two derived quantitative
attributes that are encoded with hue and brightness. The brightness en-
codes the percentage of coverage by the test cases, where dark lines rep-
resent low coverage and bright ones are high coverage. The hue encodes
the relative percentage of passed versus failed tests.

This example shows a full system that uses multiple idioms, rather
than just a single idiom. For completeness, the what–why–how analy-
sis instance includes material covered in later chapters, about the de-
sign choices of how to facet into multiple windows and how to reduce the
amount of data shown.

174 7. Arrange Tables

Idiom Dense Software Overviews
What: Data Text with numbered lines (source code, test results

log).
What: Derived Two quantitative attributes (test execution results).

How: Encode Dense layout. Spatial position and line length from
text ordering. Color channels of hue and brightness.

Why: Task Locate faults, summarize results and coverage.

Scale Lines of text: ten thousand.

(How: Facet) Same encoding, same dataset, global overview with
detail showing subset of data, different resolutions,
linking with color.

(How: Reduce) Detail: filter to local neighborhood of selection

7.7.2 Space-Filling

A space-filling layout has the property that it fills all available space
in the view, as the name implies. Any of the three geometric pos-
sibilties discussed above can be space-filling. Space-filling layouts
typically use area marks for items or containment marks for rela-
tionships, rather than line or connection marks, or point marks.
Examples of space-filling layouts using containment marks are the
treemaps in Figures 9.8 and 9.9(f) and the nested circle tree in Fig-
ure 9.9(e). Examples of space-filling layouts using area marks and
the spatial position channels are the concentric circle tree in Fig-
ure 9.9(d) and the icicle tree of Figure 9.9(b).

One advantage of space-filling approaches is that they maxi-
mize the amount of room available for color coding, increasing the
chance that the colored region will be large enough to be perceptu-
ally salient to the viewer. A related advantage is that the available
space representing an item is often large enough to show a label
embedded within it, rather than needing more room off to the side.

In contrast, one disadvantage of space-filling views is that the
designer cannot make use of white space in the layout; that is,
empty space where there are no explicit visual elements. Many
graphic design guidelines pertain to the careful use of white space
for many reasons, including readability, emphasis, relative impor-
tance, and visual balance.

7.8. Further Reading 175

Space-filling layouts typically strive to achieve high information
density. However, the property that a layout fills space is by no
means a guarantee that is using space efficiently. More techni-
cally, the definition of space-filling is that the total area used by
the layout is equal to the total area available in the view. There are
many other possible metrics for analyzing the space efficiency of a
layout. For instance, for trees, proposed metrics include the size of
the smallest nodes and the area of labels on the nodes [McGuffin
and Robert 10].

7.8 Further Reading
The Big Picture Many previous authors have proposed ways to cat-

egorize vis idioms. My framework was influenced by many
of them, including an early taxonomy of the infovis design
space [Card and Mackinlay 99] and tutorial on visual idioms
[Keim 97], a book on the grammar of graphics [Wilkinson 05], a
taxonomy of multidimensional multivariate vis [McGuffin 14],
papers on generalized pair plots [Emerson et al. 12] and prod-
uct plots [Wickham and Hofmann 11], and a recent taxon-
omy [Heer and Shneiderman 12]. Bertin’s very early book
Semiology of Graphics has been a mother lode of inspiration
for the entire field and remains thought provoking to this
day [Bertin 67].

History The rich history of visual representations of data, with par-
ticular attention to statistical graphics such as time-series
line chart, the bar chart, the pie chart, and the circle chart,
is documented at the extensive web site http://www.datavis.
ca/milestones [Friendly 08].

Statistical Graphics A book by statistician Bill Cleveland has an ex-
cellent and extensive discussion of the use of many tradi-
tional statistical charts, including bar charts, line charts, dot
charts, and scatterplots [Cleveland 93b].

Stacked Charts The complex stacked charts idiom of streamgraphs
was popularized with the ThemeRiver system [Havre et al. 00];
later work analyzes their geometry and asthetics in detail [By-
ron and Wattenberg 08].

Bar Charts versus Line Charts A paper from the cognitive psychology
literature provides guidelines for when to use bar charts ver-
sus line charts [Zacks and Tversky 99].

176 7. Arrange Tables

Banking to 45 Degrees Early work proposed aspect ratio control by
banking to 45◦ [Cleveland et al. 88,Cleveland 93b]; later work
extended this idea to an automatic multiscale framework [Heer
and Agrawala 06].

Heatmaps and Matrix Reordering One historical review covers the rich
history of heatmaps, cluster heatmaps, and matrix reorder-
ing [Wilkinson and Friendly 09]; another covers matrix re-
ordering and seriation [Liiv 10].

Parallel Coordinates Parallel coordinates were independently pro-
posed at the same time by a geometer [Inselberg and Dims-
dale 90, Inselberg 09] and a statistician [Wegman 90].

Radial Layouts Radial layouts were characterized through empirical
user studies [Diehl et al. 10] and have also been surveyed
[Draper et al. 09].

Dense Layouts Dense layouts have been explored extensively for
many datatypes [Keim 00]. The SeeSoft system was an early
dense layout for text and source code [Eick et al. 92]; Taran-
tula is a later system using that design choice [Jones et al. 02].

This page intentionally left blankThis page intentionally left blank

Arrange Spatial Data

Use Given
Geometry

Geographic
Other Derived

Spatial Fields
Scalar Fields (one value per cell)

Isocontours

Direct Volume Rendering

Vector and Tensor Fields (many values per cell)

Flow Glyphs (local)

Geometric (sparse seeds)

Textures (dense seeds)

Features (globally derived)

Figure 8.1. Design choices for using given spatial data: geometry or spatial fields.

Arrange Spatial Data

Chapter 8

8.1 The Big Picture

For datasets with spatial semantics, the usual choice for arrange
is to use the given spatial information to guide the layout. In this
case, the choices of express, separate, order, and align do not apply
because the position channel is not available for directly encoding
attributes. The two main spatial data types are geometry, where
shape information is directly conveyed by spatial elements that
do not necessarily have associated attributes, and spatial fields,
where attributes are associated with each cell in the field. Fig-
ure 8.1 summarizes the major approaches for arranging these two
data types. In a visualization context, geometry data typically ei-
ther is geographic or has explicitly been derived from some other
data type due to a design choice. For scalar fields with one at-
tribute at each field cell, the two main visual encoding idiom fam-
ilies are isocontours and direct volume rendering. For both vector
and tensor fields, with multiple attributes at each cell, there are
four families of encoding idioms: flow glyphs that show local in-
formation, geometric approaches that compute derived geometry
from a sparse set of seed points, texture approaches that use a
dense set of seeds, and feature approaches where data is derived
with global computations using information from the entire spatial
field.

8.2 Why Use Given?

The common case with spatial data is that the given spatial po-
sition is the attribute of primary importance because the central
tasks revolve around understanding spatial relationships. In these
cases, the right visual encoding choice is to use the provided spa-

179

180 8. Arrange Spatial Data

tial position as the substrate for the visual layout, rather than to
visually encode other attributes with marks using the spatial posi-
tion channel. This choice may seem obvious from common sense
alone. It also follows from the effectiveness principle, since the
most effective channel of spatial position is used to show the most
important aspect of the data, namely, the spatial relationships be-
tween elements in the dataset.

" The expressiveness prin-
ciple is covered in Sec-
tion 5.4.1.

Of course, it is possible that datasets with spatial attribute se-
mantics might not have the task involving understanding of spatial
relationships as the primary concern. In these cases, the question
of which other attributes to encode with spatial position is once
again on the table.

8.3 Geometry

Geometric data does not necessarily have attributes associated
with it: it conveys shape information directly through the spatial
position of its elements. The field of computer graphics addresses
the problem of simply drawing geometric data. What makes ge-
ometry interesting in a vis context is when it is derived from raw
source data as the result of a design decision at the abstraction
level. A common source of derived geometry data is geographic
information about the Earth. Geometry is also frequently derived
from computations on spatial fields.

8.3.1 Geographic Data
Cartographers have grappled with design choices for the visual rep-
resentation of geographic spatial data for many hundreds of years.
The term cartographic generalization is closely related to the term
abstraction as used in this book: it refers to the set of choices
about how to derive an appropriate geometry dataset from raw data
so that it is suitable for the intended task of the map users. This
concept includes considerations discussed in this book such as fil-
tering, aggregation, and level of detail. For example, a city might

" Filtering, aggregation,
and level of detail are dis-
cussed in Chapter 13. be indicated with a point mark in a map drawn at the scale of an

entire country, or as an area mark with detailed geometric infor-
mation showing the shape of its boundaries in a map at the scale
of a city and its surrounding suburbs. Cartographic data includes
what this book classifies as nonspatial information: for example,
population data in the form of a table could be used to size code
the point marks representing cities by their population.⋆

⋆ The integration of non-
spatial data with base spa-
tial data is referred to as
thematic cartography in
the cartography literature.

8.3. Geometry 181

Example: Choropleth Maps

A choropleth map shows a quantitative attribute encoded as color over
regions delimited as area marks, where the shape of each region is de-
termined by using given geometry. The region shapes might either be
provided directly as the base dataset or derived from base data based on
cartographic generalization choices. The major design choices for choro-
pleths are how to construct the colormap, and what region boundaries to
use.

Figure 8.2 shows an example of US unemployment rates from 2008
with a segmented sequential colormap. The white-to-blue colormap has
a sequence of nine levels with monotonically decreasing luminance. The

" Sequential colormaps are
covered in Section 10.3.2.

region granularity is counties within states.

" The problem of spatial
aggregation and its relation-
ship to region boundaries is
covered in Section 13.4.2.

Figure 8.2. Choropleth map showing regions as area marks using given geom-
etry, where a quantitative attribute is encoded with color. From http://bl.ocks.org/
mbostock/4060606.

Idiom Choropleth Map
What: Data Geographic geometry data. Table with one quantita-

tive attribute per region.
How: Encode Space: use given geometry for area mark bound-

aries. Color: sequential segmented colormap.

182 8. Arrange Spatial Data

8.3.2 Other Derived Geometry

Geometry data used in vis can also arise from spatial data that is
not geographic. It is frequently derived through computations on
spatial fields, as discussed below.

8.4 Scalar Fields: One Value

A scalar spatial field has a single value associated with each spa-
tially defined cell. Scalar fields are often collected through medical
imaging, where the measured value is radio-opacity in the case of
computed tomography (CT) scans and proton density in the case
of magnetic resonance imaging (MRI) scans.

There are three major families of idioms for visually encoding
scalar fields: slicing, as shown in Figure 8.3(a); isocontours, as
in shown Figure 8.3(b); and direct volume rendering, as shown
in Figure 8.3(c). With the isocontours idiom, the derived data
of lower-dimensional surface geometry is computed and then is
shown using standard computer graphics techniques: typically 2D
isosurfaces for a 3D field, or 1D isolines for a 2D field. With the di-

(a) (b) (c)

Figure 8.3. Spatial scalar fields shown with three different idioms. (a) A single 2D slice of a turbine blade dataset.
(b) Multiple semitransparent isosurfaces of a 3D tooth dataset. (c) Direct volume rendering of the entire 3D turbine
dataset. From [Kniss 02, Figures 1.2 and 2.1b].

8.4. Scalar Fields: One Value 183

rect volume rendering idiom, the computation to generate an image
from a particular 3D viewpoint makes use of all of the informa-
tion in the full 3D spatial field. With the slicing idiom, information
about only two dimensions at once is shown as an image; the slice
might be aligned with the original axes of the spatial field or could
have an arbitrary orientation in 3D space. In all of these cases,

" Slicing is also covered in
Section 11.6.1, in the con-
text of other idioms for at-
tribute reduction.

geometric navigation is the usual approach to interaction. The id-

" Section 11.5 covers geo-
metric navigation.

ioms can be combined, for example, by providing an interactively
controllable widget for selecting the position and orientation of a
slice embedded within direct volume rendering view.

8.4.1 Isocontours

A set of isolines, namely, lines that represent the contours of a
particular level of the scalar value, can be derived from a scalar
spatial field.⋆ The isolines will occur far apart in regions of slow ⋆ Synonyms for isolines

are contour lines and iso-
pleths.

change and close together in regions of fast change but will never
overlap; thus, contours for many different values can be shown
simultaneously without excessive visual clutter. Color coding the
regions between the contours with a sequential colormap yields a
contour plot, as shown in Figure 6.9(c).

Example: Topographic Terrain Maps

Topographic terrain maps are a familiar example of isolines in widespread
use by the general public. They show the contours of equal elevation
above sea level layered on top of the spatial substrate of a geographic
map. Figure 8.4 shows contours every 10 meters, with nearly 80 levels in
total. Small closed contours indicate mountain peaks, and the flat regions
near sea level have no lines at all.

Idiom Topographic Terrain Map
What: Data 2D spatial field; geographic data.

What: Derived Geometry: set of isolines computed from field.

How: Encode Use given geographic data geometry of points, lines,
and region marks. Use derived geometry as line
marks (blue).

Why: Tasks Query shape.

Scale Dozens of contour levels.

184 8. Arrange Spatial Data

Figure 8.4. Topographic terrain map, with isolines in blue. From https://data.linz.govt.nz/layer/768-nz-mainland
-contours-topo-150k.

The idiom of isosurfaces transforms a 3D scalar spatial field
into one or more derived 2D surfaces that represent the contours
of a particular level of the scalar value. The resulting surface is
usually shown with interactive 3D navigation controls for changing
the viewpoint using rotation, zooming, and translation.

" Spatial navigation is
discussed further in Sec-
tion 11.5. In the 3D case, simply showing all of the contour surfaces for

dozens of values at once is not feasible, because the outer contour
surfaces would occlude all of the inner ones. Thus, one crucial
question is how to determine which level will produce the most
useful result. Exploration is frequently supported by providing dy-
namic controls for changing the chosen level on the fly, for exam-
ple, with a slider that allows the user to quickly change the contour
value from the minimum to the maximum value within the dataset.

With careful use of colors and transparency, several isosurfaces
can be shown at once. Figure 8.3(c) shows a 3D spatial field of a
human tooth with five distinguishable isosurfaces.

8.4. Scalar Fields: One Value 185

Example: Flexible Isosurfaces

The flexible isosurfaces idiom uses one more level of derived data, the sim-
plified contour tree, to help users find structure that would be hidden with
the standard single-level approach. There may be multiple disconnected
isosurfaces for a given value: as the value changes, individual components
could appear, join or split, or disappear. The contour tree tracks this evolu-
tion explicitly, showing how the connected isosurface components change
their nesting structure. The full tree is very complex, as shown in Fig-
ure 8.5; there are over 1.5 million edges for the head dataset. Careful
simplification of the tree yields a manageable result of under 100 edges,
as shown in Figure 8.6. Using this structure for filtering and coloring
via multiple coordiated views supports interactive exploration. Figure 8.6
shows several meaningful structures within the head that have been iden-
tified through this kind of exploration; seeing them all within the same
3D view allows users to understand both their shape and their relative
position to each other.

" Filtering is discussed in
Section 13.3.2 and coordi-
nating multiple views is dis-
cussed in Section 12.3.

rendered isosurface

current
isovalue

Figure 8.5. A full contour tree with over 1.5 million edges does not help the user
explore isosurfaces. From [Carr et al. 04, Figure 1].

186 8. Arrange Spatial Data

brain

nasal
cavity

nasal
septum

lower jaw?

is
ov

al
u

e

fe
at

u
re

 s
iz

e

Simplification

tree size

Contour TreeData Display

blood
vessels

brain

blood
vessels

eyeball

eyeballs ventricle

eye socket

eye
sockets

skull

nasal
septum

nasal cavity

current
level of
simpli-
fication

ventricle

Figure 8.6. The flexible isosurfaces idiom uses the simplified contour tree of under 100 edges to help users identify
meaningful structure. From [Carr et al. 04, Figure 1].

Idiom Flexible Isosurfaces
What: Data Spatial field.

What: Derived Geometry: surfaces. Tree: simplified contour tree.

How: Encode Surfaces: use given. Tree: line marks, vertical spa-
tial position encodes isovalue.

Why: Tasks Query shape.

Scale One dozen contour levels.

8.4.2 Direct Volume Rendering
The direct volume rendering idiom creates an image directly from
the information contained within the scalar spatial field, without
deriving an intermediate geometric representation of a surface.
The algorithmic issues involved in the computation are complex;
a great deal of work has been devoted to the question of how to
carry it out efficiently and correctly.

8.4. Scalar Fields: One Value 187

A crucial visual encoding design choice with direct volume ren-
dering is picking the transfer function that maps changes in the
scalar value to opacity and color. Finding the right transfer func-
tion manually often requires considerable trial and error because
features of interest in the spatial field can be difficult to isolate:
uninteresting regions in space may contain the same range of data
values as interesting ones.

Example: Multidimensional Transfer Functions

The Simian system [Kniss 02,Kniss et al. 05] uses a derived space and a
set of interactive widgets for specifying regions within it to help the user
construct multidimensional transfer functions. The horizontal axis of this
space corresponds to the data value of the scalar function. The verti-
cal axis corresponds to the magnitude of the gradient,1 the direction of
fastest change, so that regions of high change can be distinguished from
homogeneous regions. Figure 8.7(a) shows the information that can be
considered part of a standard 1D transfer function: the histogram of the
data values. The histogram shows both the linear scale values in black,
and the log scale values in gray. In this view, only the basic three materials

" The histogram visual en-
coding idiom is covered in
Section 13.4.1.can be distinguished from each other: (A) air, (B) soft tissue, and (C) bone.

Figure 8.7(b) shows that more information can be seen in the 2D joint his-
togram of the full derived space, where the vertial axis shows the gradient
magnitude. This view is like a heatmap with very small area marks of
one pixel each, where each cell shows a count of how many values occur
within it using a grayscale colormap. In this view, boundaries between the
basic surfaces also form distinguishable structures. Figure 8.7(c) presents
a volume rendering of a head dataset using the resulting 2D transfer func-
tion, showing examples of the base materials and these three boundaries:
(D) air–tissue, (E) tissue–bone, and (F) air–bone. A cutting plane has been
positioned to show the internal structure of the head.

" Cutting planes are cov-
ered in Section 11.6.2.

Idiom Multidimensional Transfer Functions
What: Data 3D spatial field.

What: Derived 3D spatial field: gradient of original field.

What: Derived Table: two key attributes, values binned from min to
max for both data and derived data. One derived
quantitative value attribute (item count per bin).

How: Encode 3D view: use given spatial field data, color and opac-
ity from multidimensional transfer function. Joint his-
togram view: area marks in 2D matrix alignment,
grayscale sequential colormap.

1Mathematically, the gradient is the first derivative.

188 8. Arrange Spatial Data

A B C

(a)

A B C

D E

F

Data Value

(b)

B

C

E

D

F

(c)

Figure 8.6. Simian allows users to construct multidimensional transfer functions for direct volume rendering using
a derived space. (a) The standard 1D histogram can show the three basic materials: (A) air, (B) soft tissue, and (C)
bone. (b) The full 2D derived space allows material boundaries to be distinguished as well. (c) Volume rendering
of head dataset using the resulting 2D transfer function, showing material boundaries of (D) air–tissue, (E) tissue–
bone, and (F) air–bone. From [Kniss et al. 05, Figure 9.1].

8.5. Vector Fields: Multiple Values 189

Figure 8.7. The main types of critical points in a flow field: saddle, circulat-
ing sinks, circulating sources, noncirculating sinks, and noncirculating sources.
From [Tricoche et al. 02, Figure 1].

8.5 Vector Fields: Multiple Values

Vector field datasets are often associated with the application do-
main of computational fluid dynamics (CFD), as the outcome of
flow simulations or measurements. Flow vis in particular deals
with a specific kind of vector field, a velocity field, that contains
information about both direction and magnitude at each cell. The
three common cases are purely 2D spatial fields, purely 3D spatial
fields, and the intermediate case of flow on a 2D surface embedded
within 3D space. Time-varying flow datasets are called unsteady,
as opposed to steady flows where the behavior does not change
over time.

One of the features of interest in flows are the critical points,
the points in a flow field where the velocity vanishes. They are
classified by the behavior of the flow in their neighborhoods: the
three main types are attracting sources, repelling sinks, and sad-
dle points that attract from one direction and repel from another.2
Also, sources and sinks may or may not have circulation around
them.⋆ Figure 8.7 shows these five types of critical points.

⋆ In flow vis, a source
or sink with no circulation
around it is called a node,
and one with circulation is
called a focus. I avoid
these overloaded terms; in
this book, I reserve node
and link for network data
and focus+context for the
family of idioms that embed
such information together in
a single view.

There are four major families of vector field spatial visual en-
coding idioms. The flow glyph idioms show local information at
each cell. There are two major methods based on the derived data
of tracing particle trajectories, either the geometric flow approach
using a sparse set of seed points or the texture flow approach with
a dense set of seeds. The feature flow approach uses global com-
putation across the entire field to explicitly detect features, and
these derived features are usually visually encoded with glyphs or
geometry. Finally, a vector field can be reduced to a scalar field,

2A fourth possible type is a center where the flow is perfectly circular, but this
type is less important in practice.

190 8. Arrange Spatial Data

(a) (b) (c)

(d) (e) (f)

Figure 8.8. An empirical study compared human response to six different 2D flow
vis idioms. (a) arrow glyphs on a regular grid. (b) arrow glyphs on a jittered grid.
(c) triangular wedge glyphs inspired by oil painting strokes. (d) dense texture-
based Line Integral Convolution (LIC). (e) curved arrow glyphs with image-guided
streamline seeding. (f) curved arrow glyphs with regular grid streamline seeding.
From [Laidlaw et al. 05, Figure 1].

allowing any of the scalar field idioms covered in the previous sec-
tion to be used, such as direct volume rendering or isocontouring.

Laidlaw et al. conducted an empirical study comparing six vi-
sual encoding idioms for 2D vector fields [Laidlaw et al. 05]. Fig-
ures 8.8(a), 8.8(b), and 8.8(c) show local glyph idioms, Figure 8.8(d)
shows a dense texture idiom, and Figures 8.8(e) and 8.8(f) show ge-
ometric idioms. The three tasks considered were finding all of the
critical points and identifying their types; identifying what type of
critical point is at a specific location; and predicting where a par-
ticle starting at a specified point will end up being transported.⋆⋆ The technical term for the

transport of a particle within
a fluid is advection.

While none of the idioms outperformed all of the others for all
tasks, the two local glyph idioms using arrows fared worst.

8.5. Vector Fields: Multiple Values 191

8.5.1 Flow Glyphs

The flow glyph idioms show local information about a cell in the
field using an object with internal substructure; one of the most
basic choices is an arrow, as shown in Figure 8.8(a). An arrow
glyph encodes magnitude with the length of the stem, direction
with arrow orientation, and disambiguates directionality with the
arrowhead on one side of the stem. In addition to the visual encod-
ing of the glyphs themselves, another key design choice with this
idiom is how many glyphs to show: a glyph for each cell in the field,
or only a small subset. A limitation of glyph-based approaches is
the problem of occlusion in 3D fields.

8.5.2 Geometric Flow

The geometric flow idioms compute derived geometric data from
the original field using trajectories computed from a sparse set of
seed points and then directly show the derived geometry. One ma-
jor algorithmic issue is how to compute the trajectories.⋆ A crucial ⋆ The geometric ap-

proaches typically approx-
imate using numerical
integration, and so this
idiom is sometimes called
integration-based flow.

design choice is the seeding strategy: poor choices result in vi-
sual clutter and occlusion problems, but a well-chosen strategy
supports inspection of both 2D and 3D fields. In the 3D case, geo-
metric navigation is a useful interaction idiom that helps with the
shape and structure understanding tasks.

The geometric flow idioms are based on intuitions from physi-
cal experiments that can be conducted in real-world settings such
as wind tunnels, and the simpler cases all have direct physical
analogs. The trajectory that a specific particle will follow is called
a streamline for a steady field and a pathline for an unsteady (time-
varying) field. The physical analogy is the path that a single ball
would follow as time passes. In contrast, a streakline traces all the
particles that pass through a specific point in space; the analogy is
a trail of smoke particles released at different times from the same
spot. A timeline is formed by connecting a front of pathlines over
time: the analogy is placing several balls at the same time at dif-
ferent locations along a curve, and tracing the path between them
at a later time step. All of these geometric structures have coun-
terparts one dimension higher, formed by seeding from a curve
rather than from a single point: stream surfaces, path surfaces,
streak surfaces. Similarly, time surfaces are a generalization that
is formed by connecting particles released from a surface rather
than a curve.

192 8. Arrange Spatial Data

Example: Similarity-Clustered Streamlines

Figure 8.9 shows a seeding strategy for streamlines and pathlines based
on a derived similarity measure, proposed by McLoughlin et al. [McLough-
lin et al. 13]. First, the derived geometry data of streamlines or pathlines
is computed from the original 3D vector field. A set of derived attributes is
computed for each streamline or pathline: curvature, namely, the curve’s
deviation from a straight line; torsion, namely, how much the curve bends

(a)

(b)

Figure 8.9. Geometric flow vis idioms showing a sparse set of particle trajectories, with seeding and coloring accord-
ing to similarity. (a) Streamlines: all clusters equally opaque; purple cluster emphasized; red cluster emphasized.
(b) Pathlines, colored by three clusters. From [McLoughlin et al. 13, Figures 7 and 11c].

8.5. Vector Fields: Multiple Values 193

out of its plane; and tortuosity, namely, how twisted the curve is. These
three attributes are combined with a complex algorithm to form a fourth
derived attribute, the line’s signature. These signatures are used to con-
struct a similarity matrix, and that is in turn used to create a cluster
hierarchy. The user can interactively filter which lines are seeded accord-
ing to cluster membership so that as much detail as possible is preserved. " Filtering is covered in

Section 13.3.The streamline or pathline spatial geometry is drawn in 3D. Each line is
colored according to its cluster membership, and the user has interactive
control of how many clusters to show. The user can also select a cluster to
emphasize as a foreground layer with high opacity, where the others are
drawn in low opacity to form a translucent background layer. Figure 8.9(a)

" Layering is covered in
Section 12.5.

shows three views: all of the streamlines at full opacity, the purple clus-
ter emphasized, and the red cluster emphasized. Figure 8.9(b) shows an
unsteady field, with three clusters of pathlines. The interaction idiom of
geometric 3D navigation allows the user to rotate to any desired viewpoint.

Idiom Similarity-Clustered Streamlines
What: Data Spatial field: 3D vector field.

What: Derived Geometry: streamlines or pathlines.

What: Derived One attribute per streamline/pathline (signature).

What: Derived Cluster hierarchy of streamlines/pathlines.

How: Encode Use derived geometry of lines, color, and opacity ac-
cording to cluster.

Why: Tasks Find features, query shape.

Scale Field: millions of samples. Geometry: hundreds of
streamlines.

8.5.3 Texture Flow
The texture flow idioms also rely on particle tracing, but with dense
coverage across the entire field rather than from a carefully se-
lected set of seed points.⋆ They are most commonly used for 2D

⋆ The name of texture
arises from a set of data
structures and algorithms
in computer graphics that
efficiently manipulate high-
resolution images without
intermediate geometric rep-
resentations; these opera-
tions are supported in hard-
ware on modern machines.

fields or fields on 2D surfaces. Figure 8.8(d) shows an example
of the Line Integral Convolution (LIC) idiom, where white noise is
smeared according to particle flow [Cabral and Leedom 93].

8.5.4 Feature Flow
The feature flow vis idioms rely on global computations across
the entire vector field to explicitly locate all instances of specific
structures of interest, such as critical points, vortices, and shock

194 8. Arrange Spatial Data

waves.⋆ The goal is to partition the field into subregions where the⋆ An alternative name for
feature-based flow is topo-
logical flow vis.

qualitative behavior is similar. The resulting derived data is then
directly visually encoded with one of the previously described flow
idioms, for a geometric representation or a glyph showing each fea-
ture. In contrast, the previous idioms are intended to help the user
to infer the existence of these structures, but they are not neces-
sarily shown directly. A major challenge of feature-based flow vis
is the algorithmic problem of computationally locating these struc-
tures efficiently and correctly.

8.6 Tensor Fields: Many Values

Flow vis is concerned with both vector and tensor data. Tensor
fields typically contain a matrix at each cell in the field, capturing
more complex structure than what can be expressed in a vector
field.3 Tensor fields can measure properties such as stress, con-
ductivity, curvature, and diffusivity. One example of a tensor field
is diffusion tensor data, where the extent to which the rate of water
diffusion varies as a function of direction is measured with mag-
netic resonance imaging. This kind of medical imaging is often
used to study the architecture of the human brain and find abnor-
malities.

All of the idiom families used for vector fields are also used for
tensor fields: local glyphs, sparse geometry, dense textures, and
explicitly derived features.

One major family of idioms for visually encoding tensor fields is
tensor glyphs, where local information at cells in the field is shown
by controlling the shape, orientation, and appearance of a base ge-
ometric shape. Just as with vector glyphs, another design choice is
whether to show a glyph in all cells or only a carefully chosen sub-
set. While the glyph idiom is the same fundamental design choice
for both tensor and vector glyphs, tensor glyphs necessarily have a
more complex geometric structure because they must encode more
information.

Example: Ellipsoid Tensor Glyphs

Tensor quantities can be naturally decomposed into orientation and shape
information; these quantities can be visually encoded with a 3D glyph.4 A

3 Mathematically, in the 3D case second-order tensors are 3 × 3 matrices that
may be symmetric or nonsymmetric.

4Mathematically, the shape information can be computed from the eigenvalues
and the orientation from the eigenvectors.

8.6. Tensor Fields: Many Values 195

(a) (b)

Figure 8.10. 2D diffusion illustrated with ink and paper. (a) Isotropic Kleenex.
(b) Anisotropic newspaper.

shape may be isotropic, where each direction is the same, or anisotropic,
where there is a directional asymmetry. For diffusion in biological tissue,
anisotropy occurs when the water moves through tissue faster in some
directions than in others; Figure 8.10 shows a physical example of the
2D case where two different kinds of paper are stained with ink. There
is isotropic diffusion through Kleenex, where the ink spreads at the same
rate in all directions as shown in Figure 8.10(a), whereas the newspaper
has a preferred direction where the ink moves faster with anisotropic dif-
fusion as shown in Figure 8.10(b).

Figure 8.11 shows the three basic shapes that are possible in 3D. The
fully isotropic case is a perfect sphere, as in Figure 8.11(a); the partially
anisotropic planar case is a sphere flattened in only one direction, as in

(a) (b) (c)

Figure 8.11. Ellipsoid glyphs can show three basic shapes. (a) Isotropic: sphere.
(b) Partially anisotropic: planar. (c) Fully anisotropic: linear. From [Kindlmann 04,
Figure 1].

196 8. Arrange Spatial Data

(a) (b)

Figure 8.12. Ellipsoid glyphs show shape and orientation of tensors at each cell
in a field. (a) 2D slice. (b) 3D field, with isotropic glyphs filtered out. From [Kindl-
mann 04, Figures 10a and 11a].

Figure 8.11(b); and the completely anisotropic linear case is flattened dif-
ferently each of two directions to become a cigar-shaped ellipsoid, as in
Figure 8.11(c). One way to encode this shape information in a 3D glyph
is with an ellipsoid, where the direction that it points is an intuitive way
to encode the orientation. Figure 8.12(a) shows using ellipsoid glyphs to
inspect a 2D slice of a tensor field with the orientation attributes also used
for coloring. In the 3D case shown in Figure 8.12(b), the isotropic glyphs
are filtered out so that the anisotropic regions are visible.

Ellipsoid tensor glyphs have the weakness that different glyphs can-
not be disambiguated from a single viewpoint; superquadric tensor glyphs
are a more sophisticated approach that resolve this ambiguity [Kindl-
mann 04].

Idiom Ellipsoid Tensor Glyphs
What: Data Spatial field: 3D tensor field.

What: Derived Three quantitative attributes: tensor shape. Three
vectors: tensor orientation.

How: Encode Glyph showing six derived attributes, color and opac-
ity according to cluster.

The geometric tensor flow visual encoding idioms are based on
similar intuitions as in the vector case, by computing sparse de-

8.7. Further Reading 197

rived geometry such as hyperstreamlines or tensorlines; the same
situation holds for the texture tensor flow idioms. Similarly, feature
tensor flow idioms explicitly detect features in tensor fields, where
simpler cases that occur in vector fields are generalized to the more
complex possibilities of tensor fields.

8.7 Further Reading
History Thematic cartography, where statistical data is overlaid on

geographic maps, blossomed in the 19th century. Choro-
pleth maps, where shading is used to show a variable of in-
terest, were introduced, as were dot maps and proportional
symbol maps. The history of thematic cartography, includ-
ing choropleth maps, is documented at the extensive web site
http://www.datavis.ca/milestones [Friendly 08].

Cartography A more scholarly but still accessible historical review
of thematic cartography is structured around the ideas of
marks and channels [MacEachren 79]; MacEachren’s full-
length book contains a deep analysis of cartographic repre-
sentation, visualization, and design with respect to both cog-
nition and semiotics [MacEachren 95]. Slocum’s textbook
on cartography is a good general reference for the vis audi-
ence [Slocum et al. 08].

Spatial Fields One overview chapter covers a broad set of spatial field
visual encoding and interaction idioms [Schroeder and Mar-
tin 05]; another covers isosurfaces and direct volume render-
ing in particular [Kaufman and Mueller 05].

Isosurfaces Edmond Halley presented isolines in 1686 and contour
plots in 1701. The standard algorithm for creating isosur-
faces is Marching Cubes, proposed in 1987 [Lorensen and
Cline 87]; a survey covers some of the immense amount of fol-
lowup work that has occurred since then [Newman and Yi 06].
Flexible isosurfaces are discussed in a paper [Carr et al. 04].

Direct Volume Rendering The Real-Time Volume Graphics book is an
excellent springboard for further investigation of direct vol-
ume rendering [Engel et al. 06]. The foundational algorithm
papers both appeared in 1988 from two independent sources:
Pixar [Drebin et al. 88], and UNC Chapel Hill [Levoy 88]. The
Simian system supports multidimensional transfer function
construction [Kniss 02,Kniss et al. 05].

198 8. Arrange Spatial Data

Vector Fields An overview chapter provides a good introduction to
flow vis [Weiskopf and Erlebacher 05]. A series of state-of-
the-art reports provide more detailed discussion of three flow
vis idioms families: geometric [McLouglin et al. 10], texture
based [Laramee et al. 04], and feature based [Post et al. 03].
The foundational algorithm for texture-based flow vis is Line
Integral Convolution (LIC) [Cabral and Leedom 93].

Tensor Fields The edited collection Visualization and Processing of
Tensor Fields contains 25 chapters on different aspects of
tensor field vis, providing a thorough overview [Weickert and
Hagen 06]. One of these chapters is a good introduction to
diffusion tensor imaging in particular [Vilanova et al. 06], in-
cluding a comparison between ellipsoid tensor glyphs and su-
perquadric tensor glyphs [Kindlmann 04].

This page intentionally left blankThis page intentionally left blank

Arrange Networks and Trees

Node–Link Diagrams

Enclosure

Adjacency Matrix

TREESNETWORKS

Connection Marks

TREESNETWORKS

Derived Table

TREESNETWORKS

Containment Marks

Figure 9.1. Design choices for arranging networks.

Arrange Networks and Trees

Chapter 9

9.1 The Big Picture

This chapter covers design choices for arranging network data in
space, summarized in Figure 9.1. The node–link diagram family of
visual encoding idioms uses the connection channel, where marks
represent links rather than nodes. The second major family of
network encoding idioms are matrix views that directly show ad-
jacency relationships. Tree structure can be shown with the con-
tainment channel, where enclosing link marks show hierarchical
relationships through nesting.

9.2 Connection: Link Marks

The most common visual encoding idiom for tree and network data
is with node–link diagrams, where nodes are drawn as point marks
and the links connecting them are drawn as line marks. This id-
iom uses connection marks to indicate the relationships between
items. Figure 9.2 shows two examples of trees laid out as node–
link diagrams. Figure 9.2(a) shows a tiny tree of 24 nodes laid
out with a triangular vertical node–link layout, with the root on
the top and the leaves on the bottom. In addition to the connec-
tion marks, it uses vertical spatial position channel to show the
depth in the tree. The horizontal spatial position of a node does
not directly encode any attributes. It is an artifact of the layout
algorithm’s calculations to ensure maximum possible information
density while guaranteeing that there are no edge crossings or node
overlaps [Buchheim et al. 02].

Figure 9.2(b) shows a small tree of a few hundred nodes laid
out with a spline radial layout. This layout uses essentially the
same algorithm for density without overlap, but the visual encod-
ing is radial rather than rectilinear: the depth of the tree is encoded
as distance away from the center of the circle. Also, the links of

201

202 9. Arrange Networks and Trees

(a) (b)

Figure 9.2. Node–link layouts of small trees. (a) Triangular vertical for tiny tree. From [Buchheim et al. 02, Figure 2d].
(b) Spline radial layout for small tree. From http://mbostock.github.com/d3/ex/tree.html.

the graph are drawn as smoothly curving splines rather than as
straight lines.

Figure 9.3(a) shows a larger tree of 5161 nodes laid out as a
rectangular horizontal node–link diagram, with the root on the
left and the leaves stretching out to the right. The edges are col-
ored with a purple to orange continuous colormap according to the
Strahler centrality metric discussed in Section 3.7.2. The spatial
layout is fundamentally the same as the triangular one, but from
this zoomed-out position the edges within a subtree form a sin-
gle perceptual block where the spacing in between them cannot be
seen. Figure 9.3(b) shows the same tree laid out with the Bub-
bleTree algorithm [Grivet et al. 06]. BubbleTree is a radial rather
than rectilinear approach where subtrees are laid out in full circles
rather than partial circular arcs. Spatial position does encode in-
formation about tree depth, but as relative distances to the center
of the parent rather than as absolute distances in screen space.

9.2. Connection: Link Marks 203

(a) (b)

Figure 9.3. Two layouts of a 5161-node tree. (a) Rectangular horizontal node–link layout. (b) BubbleTree node–link
layout.

Networks are also very commonly represented as node–link di-
agrams, using connection. Nodes that are directly connected by
a single link are perceived as having the tightest grouping, while
nodes with a long path of multiple hops between them are less
closely grouped. The number of hops within a path—the num-
ber of individual links that must be traversed to get from one
node to another—is a network-oriented way to measure distances.
Whereas distance in the 2D plane is a continuous quantity, the
network-oriented distance measure of hops is a discrete quan-
tity. The connection marks support path tracing via these discrete
hops.

Node–link diagrams in general are well suited for tasks that in-
volve understanding the network topology: the direct and indirect
connections between nodes in terms of the number of hops be-
tween them through the set of links. Examples of topology tasks
include finding all possible paths from one node to another, find-
ing the shortest path between two nodes, finding all the adjacent
nodes one hop away from a target node, and finding nodes that

204 9. Arrange Networks and Trees

act as a bridge between two components of the network that would
otherwise be disconnected.

Node–link diagrams are most often laid out within a two-dimen-
sional planar region. While it is algorithmically straightforward to
design 3D layout algorithms, it is rarely an effective choice because
of the many perceptual problems discussed in Section 6.3, and
thus should be carefully justified.

Example: Force-Directed Placement

One of the most widely used idioms for node–link network layout using
connection marks is force-directed placement. There are many variants
in the force-directed placement idiom family; in one variant, the network
elements are positioned according to a simulation of physical forces where
nodes push away from each other while links act like springs that draw
their endpoint nodes closer to each other.⋆ Many force-directed placement⋆Force-directed placement

is also known as spring
embedding, energy mini-
mization, or nonlinear op-
timization.

algorithms start by placing nodes randomly within a spatial region and
then iteratively refine their location according to the pushing and pulling
of these simulated forces to gradually improve the layout. One strength
of this approach is that a simple version is very easy to implement. An-
other strength is that it is relatively easy to understand and explain at a
conceptual level, using the analogy of physical springs.

Force-directed network layout idioms typically do not directly use spa-
tial position to encode attribute values. The algorithms are designed to
minimize the number of distracting artifacts such as edge crossings and
node overlaps, so the spatial location of the elements is a side effect of the
computation rather than directly encoding attributes. Figure 9.4(a) shows
a node–link layout of a graph, using the idiom of force-directed placement.
Size and color coding for nodes and edges is also common. Figure 9.4(a)
shows size coding of edge attributes with different line widths, and Fig-
ure 9.4(b) shows size coding for node attributes through different point
sizes.

Analyzing the visual encoding created by force-directed placement is
somewhat subtle. Spatial position does not directly encode any attributes
of either nodes or links; the placement algorithm uses it indirectly. A
tightly interconnected group of nodes with many links between them will
often tend to form a visual clump, so spatial proximity does indicate
grouping through a strong perceptual cue. However, some visual clumps
may simply be artifacts: nodes that have been pushed near each other
because they were repelled from elsewhere, not because they are closely
connected in the network. Thus, proximity is sometimes meaningful but
sometimes arbitrary; this ambiguity can mislead the user. This situa-
tion is a specific instance of the general problem that occurs in all idioms
where spatial position is implicitly chosen rather than deliberately used to
encode information.

9.2. Connection: Link Marks 205

(a) (b)

Figure 9.4. Node–link layouts of small networks. (a) Force-directed placement of small network of 75 nodes,
with size coding for link attributes. (b) Larger network, with size coding for node attributes. From http://bl.ocks.org/
mbostock/4062045 and http://bl.ocks.org/1062288.

One weakness of force-directed placement is that the layouts are often
nondeterministic, meaning that they will look different each time the algo-
rithm is run, rather than deterministic approaches such as a scatterplot
or a bar chart that yield an identical layout each time for a specific data-
set. Most idioms that use randomness share this weakness.1 The problem
with nondeterministic visual encodings is that spatial memory cannot be
exploited across different runs of the algorithm. Region-based identifica-
tions such as “the stuff in the upper left corner” are not useful because
the items placed in that region might change between runs. Moreover,
the randomness can lead to different proximity relationships each time,
where the distances between the nodes reflect the randomly chosen initial
positions rather than the intrinsic structure of the network in terms of
how the links connect the nodes. Randomness is particularly tricky with
dynamic layout, where the network is a dynamic stream with nodes and
links that are added, removed, or changed rather than a static file that
is fully available when the layout begins. The visual encoding goal of dis-
rupting the spatial stability of the layout as little as possible, just enough

1There are simple algorithmic solutions for supporting repeatability with most
random layouts by using the same seed for the pseudorandom number generator.

206 9. Arrange Networks and Trees

to adequately reflect the changing structure, requires sophisticated algo-
rithmic strategies.

A major weakness of force-directed placement is scalability, both in
terms of the visual complexity of the layout and the time required to com-
pute it. Force-directed approaches yield readable layouts quickly for tiny
graphs with dozens of nodes, as shown in Figure 9.4. However, the layout
quickly degenerates into a hairball of visual clutter with even a few hun-
dred nodes, where the tasks of path following or understanding overall
structural relationships become very difficult, essentially impossible, with
thousands of nodes or more. Straightforward force-directed placement is
unlikely to yield good results when the number of nodes is more than
roughly four times the number of links. Moreover, many force-directed
placement algorithms are notoriously brittle: they have many parameters
that can be tweaked to improve the layout for a particular dataset, but
different settings are required to do well for another. As with many kinds
of computational optimization, many force-directed placement algorithms
search in a way that can get stuck in local minimum energy configuration
that is not the globally best answer.

In the simplest force-directed algorithms, the nodes never settle down
to a final location; they continue to bounce around if the user does not
explicitly intervene to halt the layout process. While seeing the force-
directed algorithm iteratively refine the layout can be interesting while the
layout is actively improving, continual bouncing can be distracting and
should be avoided if a force-directed layout is being used in a multiple-view
context where the user may want to attend to other views without having
motion-sensitive peripheral vision invoked. More sophisticated algorithms
automatically stop by determining that the layout has reached a good
balance between the forces.

Idiom Force-Directed Placement
What: Data Network.

How: Encode Point marks for nodes, connection marks for links.

Why: Tasks Explore topology, locate paths.

Scale Nodes: dozens/hundreds. Links: hundreds.
Node/link density: L < 4N

Many recent approaches to scalable network drawing are multi-
level network idioms, where the original network is augmented with
a derived cluster hierarchy to form a compound network. The clus-

" Compound networks are
discussed further in Sec-
tion 9.5.

ter hierarchy is computed by coarsening the original network into
successively simpler networks that nevertheless attempt to capture
the most essential aspects of the original’s structure. By laying out

" Cluster hierarchies are
discussed in more detail in
Section 13.4.1. the simplest version of the networks first, and then improving the

9.2. Connection: Link Marks 207

layout with the more and more complex versions, both the speed
and quality of the layout can be improved. These approaches do
better at avoiding the local minimum problem.

Example: sfdp

Figure 9.5(a) shows a network of 7220 nodes and 13,800 edges using
the multilevel scalable force-directed placement (sfdp) algorithm [Hu 05],
where the edges are colored by length. Significant cluster structure is
indeed visible in the layout, where the dense clusters with short orange
and yellow edges can be distinguished from the long blue and green edges
between them. However, even these sophisticated idioms hit their limits
with sufficiently large networks and fall prey to the hairball problem. Fig-
ure 9.5(b) shows a network of 26,028 nodes and 100,290 edges, where the
sfdp layout does not show much visible structure. The enormous num-
ber of overlapping lines leads to overwhelming visual clutter caused by
occlusion.

(a) (b)

Figure 9.5. Multilevel graph drawing with sfdp [Hu 05]. (a) Cluster structure is visible for a large network of 7220
nodes and 13,800 edges. (b) A huge graph of 26,028 nodes and 100,290 edges is a “hairball” without much visible
structure. From [Hu 14].

208 9. Arrange Networks and Trees

Idiom Multilevel Force-Directed Placement (sfdp)
What: Data Network.

What: Derived Cluster hierarchy atop original network.

What: Encode Point marks for nodes, connection marks for links.

Why: Tasks Explore topology, locate paths and clusters.

Scale Nodes: 1000–10,000. Links: 1000–10,000.
Node/link density: L < 4N.

9.3 Matrix Views

Network data can also be encoded with a matrix view by deriving a
table from the original network data.

Example: Adjacency Matrix View

A network can be visually encoded as an adjacency matrix view, where all
of the nodes in the network are laid out along the vertical and horizontal
edges of a square region and links between two nodes are indicated by
coloring an area mark in the cell in the matrix that is the intersection
between their row and column. That is, the network is transformed into
the derived dataset of a table with two key attributes that are separate
full lists of every node in the network, and one value attribute for each
cell records whether a link exists between the nodes that index the cell.

" Adjacency matrix views
use 2D alignment, just like
the tabular matrix views
covered in Section7.5.2.

Figure 9.6(a) shows corresponding node–link and adjacency matrix views
of a small network. Figures 9.6(b) and 9.6(c) show the same comparison
for a larger network.

Additional information about another attribute is often encoded by col-
oring matrix cells, a possibility left open by this spatially based design
choice. The possibility of size coding matrix cells is limited by the number
of available pixels per cell; typically only a few levels would be distin-
guishable between the largest and the smallest cell size. Network matrix
views can also show weighted networks, where each link has an associated
quantitative value attribute, by encoding with an ordered channel such as
luminance or size.

For undirected networks where links are symmetric, only half of the
matrix needs to be shown, above or below the diagonal, because a link
from node A to node B necessarily implies a link from B to A. For directed
networks, the full square matrix has meaning, because links can be asym-
metric.

9.4. Costs and Benefits: Connection versus Matrix 209

(a) (b) (c)

Figure 9.6. Comparing node–link matrix and matrix views of a network. (a) Node–link and matrix views of small
network. (b) Matrix view of larger network. (c) Node–link view of larger network. From [Gehlenborg and Wong 12,
Figures 1 and 2].

Matrix views of networks can achieve very high information density, up
to a limit of one thousand nodes and one million edges, just like cluster
heatmaps and all other matrix views that use small area marks.

Idiom Adjacency Matrix View
What: Data Network.

What: Derived Table: network nodes as keys, link status between
two nodes as values.

How: Encode Area marks in 2D matrix alignment.

Scale Nodes: 1000. Links: one milllion.

9.4 Costs and Benefits: Connection
versus Matrix

The idiom of visually encoding networks as node–link diagrams,
with connection marks representing the links between nodes, is
by far the most popular way to visualize networks and trees. In
addition to all of the examples in Section 9.2, many of the other
examples in other parts of this book use this idiom. Node–link net-
work examples inclue the genealogical graphs of Figure 4.6, the
telecommunications network using linewidth to encode bandwidth

210 9. Arrange Networks and Trees

of Figure 5.9, the gene interaction network shown with Cerebral in
Figure 12.5, and the graph interaction examples of Figure 14.10.
Node–link tree views include the DOITree of Figure 14.2, the Cone
Trees of Figure 14.4, a file system shown with H3 in Figure 14.6,
and the phylogenetic trees shown with TreeJuxtaposer in Fig-
ure 14.7.

The great strength of node–link layouts is that for sufficiently
small networks they are extremely intuitive for supporting many of
the abstract tasks that pertain to network data. They particularly
shine for tasks that rely on understanding the topological structure
of the network, such as path tracing and searching local topolog-
ical neighborhoods a small number of hops from a target node,
and can also be very effective for tasks such as general overview or
finding similar substructures. The effectiveness of the general id-
iom varies considerably depending on the specific visual encoding
idiom used; there has been a great deal of algorithmic work in this
area.

Their weakness is that past a certain limit of network size and
link density, they become impossible to read because of occlusion
from edges crossing each other and crossing underneath nodes.
The link density of a network is the number of links compared with
the number of nodes. Trees have a link density of one, with one
edge for each node. The upper limit for node–link diagram effec-
tiveness is a link density of around three or four [Melançon 06].

Even for networks with a link density below four, as the network
size increases the resulting visual clutter from edges and nodes oc-
cluding each other eventually causes the layout to degenerates into
an unreadable hairball. A great deal of algorithmic work in graph
drawing has been devoted to increasing the size of networks that
can be laid out effectively, and multilevel idioms have led to signif-
icant advances in layout capabilities. The legibility limit depends
on the algorithm, with simpler algorithms supporting hundreds of
nodes while more state-of-the-art ones handle thousands well but
degrade in performance for tens of thousands. Limits do and will
remain; interactive navigation and exploration idioms can address
the problem partially but not fully. Filtering, aggregation, and nav-
igation are design choices that can ameliorate the clutter problem,
but they do impose cognitive load on the user who must then re-
member the structure of the parts that are not visible.

The other major approach to network drawing is a matrix view.
A major strength of matrix views is perceptual scalability for both
large and dense networks. Matrix views completely eliminate the
occlusion of node–link views, as described above, and thus are

9.4. Costs and Benefits: Connection versus Matrix 211

effective even at very high information densities. Whereas node–
link views break down once the density of edges is more than about
three or four times the number of nodes, matrix views can handle
dense graphs up to the mathematical limit where the edge count
is the number of nodes squared. As discussed in the scalability
analyses of Sections 7.5.2 and 13.4.1, a single-level matrix view
can handle up to one million edges and an aggregated multilevel
matrix view might handle up to ten billion edges.

Another strength of matrix views is their predictability, stability,
and support for reordering. Matrix views can be laid out within a
predictable amount of screen space, whereas node–link views may
require a variable amount of space depending on dataset charac-
teristics, so the amount of screen real estate needed for a legible
layout is not known in advance. Moreover, matrix views are sta-
ble; adding a new item will only cause a small visual change. In
contrast, adding a new item in a force-directed view might cause a
major change. This stability allows multilevel matrix views to eas-
ily support geometric or semantic zooming. Matrix views can also
be used in conjunction with the interaction design choice of re-
ordering, where the linear ordering of the elements along the axes
is changed on demand.

" Reordering is discussed
further in Section 7.5.

Matrix views also shine for quickly estimating the number of
nodes in a graph and directly supporting search through fast node
lookup. Finding an item label in an ordered list is easy, whereas
finding a node given its label in node–link layout is time consuming
because it could be placed anywhere through the two-dimensional
area. Node–link layouts can of course be augmented with interac-
tive support for search by highlighting the matching nodes as the
labels are typed.

One major weakness of matrix views is unfamiliarity: most
users are able to easily interpret node–link views of small networks
without the need for training, but they typically need training to
interpret matrix views. However, with sufficient training, many as-
pects of matrix views can become salient. These include the tasks
of finding specific types of nodes or node groups that are supported
by both matrix views and node–link views, through different but
roughly equally salient visual patterns in each view. Figure 9.7
shows three such patterns [McGuffin 12]. The completely inter-
connected lines showing a clique in the node–link graph is instead
a square block of filled-in cells along the diagonal in the matrix
view. After training, it’s perhaps even easier to tell the differences
between a proper clique and a cluster of highly but not completely
interconnected nodes in the matrix view. Similarly, the biclique

212 9. Arrange Networks and Trees

Figure 9.7. Characteristic patterns in matrix views and node–link views: both can show cliques and clusters clearly.
From [McGuffin 12, Figure 6].

structure of node subsets where edges connect each node in one
subset with one in another is salient, but different, in both views.
The degree of a node, namely, the number of edges that connect to
it, can be found by counting the number of filled-in cells in a row
or column.

The most crucial weakness of matrix views is their lack of sup-
port for investigating topological structure because they show links
in a more indirect way than the direct connections of node–link di-
agrams. This weakness is a direct trade-off for their strength in
avoiding clutter. One reason that node–link views are so popu-
lar, despite the many other strengths of matrix views listed above,
might be that most complex domain tasks involving network ex-
ploration end up requiring topological structure inspection as a
subtask. Hybrid multiple-view systems that use both node–link
and matrix representations are a nice way to combine their com-
plementary strengths, such as the MatrixExplorer system shown
in Figure 4.8.

An empirical investigation [Ghoniem et al. 05] compared node–
link and matrix views for many low-level abstract network tasks.
It found that for most tasks studied, node–link views are best for
small networks and matrix views are best for large networks. In
specific, several tasks became more difficult for node–link views as
size increased, whereas the difficulty was independent of size for

9.5. Containment: Hierarchy Marks 213

matrix views: approximate estimation of the number of nodes and
of edges, finding the most connected node, finding a node given
its label, finding a direct link between two nodes, and finding a
common neighbor between two nodes. However, the task of finding
a multiple-link path between two nodes was always more difficult
in matrix views, even with large network sizes. This study thus
meshes with the analysis above, that topological structure tasks
such as path tracing are best supported by node–link views.

9.5 Containment: Hierarchy Marks

Containment marks are very effective at showing complete infor-
mation about hierarchical structure, in contrast to connection
marks that only show pairwise relationships between two items
at once.

Example: Treemaps

The idiom of treemaps is an alternative to node–link tree drawings, where
the hierarchical relationships are shown with containment rather than
connection. All of the children of a tree node are enclosed within the area
allocated that node, creating a nested layout. The size of the nodes is
mapped to some attribute of the node. Figure 9.8 is a treemap view of the

Figure 9.8. Treemap layout showing hierarchical structure with containment rather
than connection, in contrast to the node–link diagrams of the same 5161-node tree
in Figure 9.3.

214 9. Arrange Networks and Trees

same dataset as Figure 9.3, a 5161-node computer file system. Here, node
size encodes file size. Containment marks are not as effective as the pair-
wise connection marks for tasks focused on topological structure, such as
tracing paths through the tree, but they shine for tasks that pertain to
understanding attribute values at the leaves of the tree. They are often
used when hierarchies are shallow rather than deep. Treemaps are very
effective for spotting the outliers of very large attribute values, in this case
large files.

Idiom Treemaps
What: Data Tree.

How: Encode Area marks and containment, with rectilinear layout.

Why: Tasks Query attributes at leaf nodes.

Scale Leaf nodes: one million. Links: one million.

Figure 9.9 shows seven different visual encoding idioms for tree
data. Two of the visual encoding idioms in Figure 9.9 use contain-
ment: the treemap in Figure 9.9(f) consisting of nested rectangles,
and the nested circles of Figure 9.9(e). Two use connection: the
vertical node–link layout in Figure 9.9(a) and the radial node–link
layout in Figure 9.9(c).

Although connection and containment marks that depict the
link structure of the network explicitly are very common ways to
encode networks, they are not the only way. In most of the trees in
Figure 9.9, the spatial position channel is explicitly used to show

(a) (b) (c) (d) (e) (f) (g)

Figure 9.9. Seven visual encoding idioms showing the same tree dataset, using different combinations of visual
channels. (a) Rectilinear vertical node–link, using connection to show link relationships, with vertical spatial position
showing tree depth and horizontal spatial position showing sibling order. (b) Icicle, with vertical spatial position and
size showing tree depth, and horizontal spatial position showing link relationships and sibling order. (c) Radial node–
link, using connection to show link relationships, with radial depth spatial position showing tree depth and radial
angular position showing sibling order. (d) Concentric circles, with radial depth spatial position and size showing
tree depth and radial angular spatial position showing link relationships and sibling order. (e) Nested circles, using
radial containment, with nesting level and size showing tree depth. (f) Treemap, using rectilinear containment, with
nesting level and size showing tree depth. (g) Indented outline, with horizontal spatial position showing tree depth
and link relationships and vertical spatial position showing sibling order. From [McGuffin and Robert 10, Figure 1].

9.5. Containment: Hierarchy Marks 215

the tree depth of a node. However, three layouts show parent–child
relationships without any connection marks at all. The rectilin-
ear icicle tree of Figure 9.9(b) and the radial concentric circle tree
of Figure 9.9(d) show tree depth with one spatial dimension and
parent–child relationships with the other. Similarly, the indented
outline tree of Figure 9.9(g) shows parent–child relationships with
relative vertical position, in addition to tree depth with horizontal
position.

Example: GrouseFlocks

The containment design choice is usually only used if there is a hierar-
chical structure; that is, a tree. The obvious case is when the network
is simply a tree, as above. The other case is with a compound network,
which is the combination of a network and tree; that is, in addition to a
base network with links that are pairwise relations between the network
nodes, there is also a cluster hierarchy that groups the nodes hierarchi-
cally.⋆ In other words, a compound network is a combination of a network ⋆ The term multilevel net-

work is sometimes used as
a synonym for compound
network.

" Cluster hierarchies are
discussed further in Sec-
tion 7.5.2.

and a tree on top of it, where the nodes in the network are the leaves of
the tree. Thus, the interior nodes of the tree encompass multiple network
nodes.

Containment is often used for exploring such compound networks. In
the sfdp example above, there was a specific approach to coarsening the
network that created a single derived hierarchy. That hierarchy was used
only to accelerate force-directed layout and was not shown directly to the
user. In the GrouseFlocks system, users can investigate multiple pos-
sible hierarchies and they are shown explicitly. Figure 9.10(a) shows a
network and Figure 9.10(b) shows a cluster hierarchy built on top of it.

(a) (b) (c)

Figure 9.10. GrouseFlocks uses containment to show graph hierarchy structure.
(a) Original graph. (b) Cluster hierarchy built atop the graph, shown with a node–
link layout. (c) Network encoded using connection, with hierarchy encoded using
containment. From [Archambault et al. 08, Figure 3].

216 9. Arrange Networks and Trees

Figure 9.10(c) shows a combined view using of containment marks for the
associated hierarchy and connection marks for the original network links.

System GrouseFlocks
What: Data Network.

What: Derived Cluster hierarchy atop original network.

What: Encode Connection marks for original network, containment
marks for cluster hierarchy.

9.6 Further Reading

Network Layout An early survey of network vis [Herman et al. 00]
was followed by one covering more recent developments [von
Landesberger et al. 11]. A good starting point for network
layout algorithms is a tutorial that covers node–link, matrix,
and hybrid approaches, including techniques for ordering the
nodes [McGuffin 12]. An analysis of edge densities in node–
link graph layouts identifies the limit of readability as
edge counts beyond roughly four times the node count
[Melançon 06].

Force-Directed Placement Force-directed placement has been heavily
studied; a good algorithmically oriented overview appears in
a book chapter [Brandes 01]. The Graph Embedder (GEM)
algorithm is a good example of a sophisticated placement al-
gorithm with built-in termination condition [Frick et al. 95].

Multilevel Network Layout Many multilevel layouts have been pro-
posed, including sfdp [Hu 05], FM3 [Hachul and Jünger 04],
and TopoLayout [Archambault et al. 07b].

Matrix versus Node–Link Views The design space of matrix layouts,
node–link layouts, and hybrid combinations were considered
for the domain of social network analysis [Henry and Fekete 06,
Henry et al. 07]. The results of an empirical study were used
to characterize the uses of matrix versus node–link views for
a broad set of abstract tasks [Ghoniem et al. 05].

Design Space of Tree Drawings A hand-curated visual bibliography of
hundreds of different approaches to tree drawing is available
at http://treevis.net [Schulz 11]. Design guidelines for a wide

9.6. Further Reading 217

variety of 2D graphical representations of trees are the result
of analyzing their space efficiency [McGuffin and Robert 10].
Another analysis covers the design space of approaches to
tree drawing beyond node–link layouts [Schulz et al. 11].

Treemaps Treemaps were first proposed at the University of Mary-
land [Johnson and Shneiderman 91]. An empirical study led
to perceptual guidelines for creating treemaps by identifying
the data densities at which length-encoded bar charts become
less effective than area-encoded treemaps [Kong et al. 10].

Color

Motion

Hue Saturation Luminance

Direction, Rate,
Frequency, ...

Color Map
Categorical

Ordered
Sequential

Bivariate

Diverging

Length

Angle

Curvature

Area

Volume

Size, Angle, Curvature, ...

Shape

Motion

Color Encoding

Encode Map

Figure 10.1. Design choices for mapping color and other visual encoding channels.

Map Color and Other Channels

Chapter 10

10.1 The Big Picture
This chapter covers the mapping of color and other nonspatial
channels in visual encoding design choices, summarized in Fig-
ure 10.1. The colloquial term color is best understood in terms of
three separate channels: luminance, hue, and saturation. The ma-
jor design choice for colormap construction is whether the intent is
to distinguish between categorical attributes or to encode ordered
attributes. Sequential ordered colormaps show a progression of
an attribute from a minimum to a maximum value, while diverg-
ing ordered colormaps have a visual indication of a zero point in
the center where the attribute values diverge to negative on one
side and positive on the other. Bivariate colormaps are designed to
show two attributes simultaneously using carefully designed com-
binations of luminance, hue, and saturation.

The characteristics of several more channels are also covered:
the magnitude channels of size, angle, and curvature and the iden-
tity channels of shape and motion.

10.2 Color Theory
Color is a rich and complex topic, and here I only touch on the
most crucial aspects that apply to vis.

10.2.1 Color Vision
The retina of the eye has two different kinds of receptors. The rods
actively contribute to vision only in low-light settings and provide
low-resolution black and white information. I will thus not discuss
them further in this book. The main sensors in normal lighting
conditions are the cones. There are three types of cones, each with
peak sensitivities at a different wavelength within the spectrum of

219

220 10. Map Color and Other Channels

visible light. The visual system immediately processes these sig-
nals into three opponent color channels: one from red to green,
one from blue to yellow, and one from black and white encod-
ing luminance information. The luminance channel conveys high-
resolution edge information, while the red–green and blue–yellow
channels are lower resolution. This split between luminance and
chromaticity—what most people informally call would normally call
color—is a central issue in visual encoding design.

The theory of opponent color channels explains what is collo-
quially called color blindness, which affects around 8% of men in
its most common form. A more accurate term is color deficiency,
since a “colorblind” person’s ability to differentiate color along the
red–green channel is reduced or absent but their blue–yellow chan-
nel is still in full working order.⋆⋆ There is a type of color

deficiency where the blue–
yellow channel is impaired,
tritanopia, but it is ex-
tremely rare and not sex
linked. The two common
forms of red–green color
blindness are deutera-
nopia and protanopia;
both are sex linked.

10.2.2 Color Spaces
The color space of what colors the human visual system can de-
tect is three dimensional; that is, it can be adequately described
using three separate axes. There are many ways to mathemati-
cally describe color as a space and to transform colors from one
such space into another. Some of these are extremely convenient
for computer manipulation, while others are a better match with
the characteristics of human vision.

The most common color space in computer graphics is the sys-
tem where colors are specified as triples of red, green, and blue
values, which is called the RGB system. Although this system is
computationally convenient, it is a very poor match for the me-
chanics of how we see. The red, green, and blue axes of the RGB
color space are not useful as separable channels; they give rise to
the integral perception of a color. I do not discuss them further as
channels in my analysis of visual encoding.

Another color space, the hue–saturation–lightness or HSL sys-
tem, is more intuitive and is heavily used by artists and designers.
The hue axis captures what we normally think of as pure colors
that are not mixed with white or black: red, blue, green, yellow,
purple, and so on. The saturation axis is the amount of white
mixed with that pure color. For instance, pink is a partially desat-
urated red. The lightness axis is the amount of black mixed with
a color. A common design for color pickers is a disk with white at
the center and the hue axis wrapped around the outside, with sep-
arate linear control for the amount of darkness versus lightness,
as shown in Figure 10.2. The HSV space is very similar, where V
stands for grayscale value and is linearly related to L.

10.2. Color Theory 221

Figure 10.2. A common HSL/HSV colorpicker design, as in this example from Mac
OS X, is to show a color wheel with fully saturated color around the outside and
white at the center of the circle, and a separate control for the darkness.

Despite the popularity of the HSL space, it is only pseudoper-
ceptual: it does not truly reflect how we perceive color. In par-
ticular, the lightness L is wildly different from how we perceive
luminance. Figure 10.3 shows six different hues, arranged in or-
der of their luminance. The corresponding computed L values are
all identical. The true luminance is a somewhat better match with
our perceptual experience: there is some variation between the
boxes. However, our perception of luminance does not match what

Corners of the RGB
color cube

L from HSL
All the same

Luminance

L*

Figure 10.3. Comparing HSL lightness, true luminance, and perceptually linear
luminance L∗ for six colors. The computed HSL lightness L is the same for all
of these colors, showing the limitations of that color system. The true luminance
values of these same six colors, as could be measured with an instrument. The
computed perceptually linear luminance L∗ of these colors is the best match with
what we see. After [Stone 06].

222 10. Map Color and Other Channels

Wavelength (nm)

IRUV

Visible Spectrum

Figure 10.4. The spectral sensitivity of our eyes to luminance depends on
the wavelength of the incoming light. After [Kaiser 96], http://www.yorku.ca/eye/
photopik.htm.

an instrument would measure: the amount of luminance that hu-
mans perceive depends on the wavelength. Figure 10.4 shows the
roughly bell-shaped spectral sensitivity curve for daylight vision.
We are much more sensitive to middle wavelengths of green and
yellow than to the outer wavelengths of red and blue.

There are several color spaces that attempt to provide a percep-
tually uniform space, including one known as L∗a∗b∗. This space
has a single black and white luminance channel L∗, and the two
color axes a∗ and b∗. Figure 10.3 also shows the L∗ values for the
same six boxes, which is even a better match with what we see
than true luminance. The L∗ axis is a nonlinear transformation
of the luminance perceived by the human eye. Our perception of
luminance is compressed, as shown by the exponent of n = 0.5 for
the brightness power law curve in Figure 5.7. The L∗ axis is de-

" Accuracy of perception is
discussed in Section 5.5.1.

signed to be perceptually linear, so that equally sized steps appear
equal to our visual systems, based on extensive measurement and
calibration over a very large set of observers. The color axes have
also been designed to be as perceptually linear as possible. The
L∗a∗b∗ space is thus well suited for many computations, including
interpolation and finding differences between colors, that should
not be executed in the perceptually nonlinear RGB or HSL spaces.

10.2. Color Theory 223

In this book, I use the term luminance as an evocative way to
describe the black and white visual channel.⋆ I use saturation and

⋆ I avoid the term per-
ceptually linear luminance
as inaccurate for visualiza-
tion analysis because very
few visual encoding idioms
carry out this computation.
Similarly, I avoid the term
brightness, the technical
term for the human per-
ceptual experience of lu-
minance, because it is af-
fected by many factors such
as illumination levels and
surrounding context; again,
visual encoding idioms typi-
cally manipulate luminance
rather than attempting to
deliver true brightness.

hue for the other two chromaticity channels.⋆

⋆ This hybrid usage of lu-
minance, saturation, and
hue does not correspond
exactly to any of the stan-
dard color spaces used in
computer graphics.

10.2.3 Luminance, Saturation, and Hue

Color can be confusing in vis analysis because it is sometimes
used as a magnitude channel and sometimes as a identity chan-
nel. When I use the precise terms luminance, hue, and saturation,
I mean the three separable visual channels that pertain to color
in the analysis of visual encoding. Luminance and saturation are
magnitude channels, while hue is a identity channel. When I use
the generic term color, I mean the integral perception across all
three of these channels at once, and I am analyzing it as an iden-
tity channel.

The magnitude channel of luminance is suitable for ordered data
types. However, one consideration with luminance is our low accu-
racy in perceiving whether noncontiguous regions have the same
luminance because of contrast effects. Thus, the number of dis-
criminable steps is small, typically less then five when the back-
ground is not uniform: Ware suggests avoiding grayscale if more
than two to four bins are required [Ware 13].

Moreover, a fundamental problem with using it for encoding a
specific data attribute is that luminance is then “used up” and
cannot be used for other purposes. A crucial consideration when
visual encoding with color is that luminance contrast is the only
way we can resolve fine detail and see crisp edges; hue contrast or
saturation contrast does not provide detectable edges. In particu-
lar, text is not readable without luminance contrast. The standard
guidelines are that 10:1 is a good luminance contrast ratio for text,
with 3:1 as a minimum [Ware 13]. If it’s important that fine-grained
features are legible, ensure that you provide sufficient luminance
contrast.

The magnitude channel of saturation is also suitable for ordered
data. Saturation shares the problem of low accuracy for noncon-
tiguous regions. The number of discriminable steps for saturation
is low: around three bins [Ware 13].

Moreover, saturation interacts strongly with the size channel:
it is more difficult to perceive in small regions than in large ones.
Point and line marks typically occupy small regions, so using just
two different saturation levels is safer in these cases. Finally,

224 10. Map Color and Other Channels

Saturation

Luminance

Hue

Figure 10.5. The luminance and saturation channels are automatically interpreted
as ordered by our perceptual system, but the hue channel is not.

saturation and hue are not separable channels within small re-
gions for the purpose of categorical color coding.

For small regions, designers should use bright, highly saturated
colors to ensure that the color coding is distinguishable. When
colored regions are large, as in backgrounds, the design guideline
is the opposite: use low-saturation colors; that is, pastels.

The identity channel of hue is extremely effective for categorical
data and showing groupings. It is the highest ranked channel for
categorical data after spatial position.

However, hue shares the same challenges as saturation in terms
of interaction with the size channel: hue is harder to distinguish
in small regions than large regions. It also shared the same chal-
lenges as saturation and luminance for separated regions: we can
make fine distinctions in hue for contiguous regions, but we have
very limited discriminability between separated regions. The num-
ber of discriminable steps for hue in small separated regions is
moderate, around six or seven bins.

Unlike luminance and saturation, hue does not have an im-
plicit perceptual ordering, as shown in Figure 10.5. People can
reliably order by luminance, always placing gray in between black
and white. With saturation, people reliably place the less saturated
pink between fully saturated red and zero-saturation white. How-
ever, when they are asked to create an ordering of red, blue, green,
and yellow, people do not all give the same answer. People can and
do learn conventions, such as green–yellow–red for traffic lights, or
the order of colors in the rainbow, but these constructions are at a
higher level than pure perception.

10.3. Colormaps 225

10.2.4 Transparency
A fourth channel strongly related to the other three color chan-
nels is transparency: information can be encoded by decreasing
the opacity of a mark from fully opaque to completely see-through.
Transparency cannot be used independently of the other color
channels because of its strong interaction effects with them: fully
transparent marks cannot convey any information at all with the
other three channels. In particular, transparency coding interacts
strongly with luminance and saturation coding and should not be
used in conjunction with them at all. It can be used in conjunc-
tion with hue encoding with a very small number of discriminable
steps, most frequently just two. Transparency is used most of-
ten with superimposed layers, to create a foreground layer that is
distinguishable from the background layer. It is frequently used

" Superimposing layers is
covered in Section 12.5.

redundantly, where the same information is encoded with another
channel as well.

10.3 Colormaps

A colormap specifies a mapping between colors and data values;
that is, a visual encoding with color.⋆ Using color to encode data ⋆ Colormapping is also

called pseudocoloring, es-
pecially in earlier literature.
Another synonym for color-
map is color ramp.

is a powerful and flexible design choice, but colormap design has
many pitfalls for the unwary.

Figure 10.6 shows the taxonomy of colormaps; it is no coinci-
dence that it mirrors the taxonomy of data types. Colormaps can
be categorical or ordered, and ordered colormaps can be either se-
quential or diverging. Of course, it is important to match colormap
to data type characteristics, following the expressiveness principle.

" The principle of expres-
sivness is covered in Sec-
tion 5.4.1.Colormaps for ordered data should use the magnitude channels of

luminance and saturation, since the identity channel of hue does
not have an implicit ordering.

Colormaps can either be a continuous range of values, or seg-
mented into discrete bins of color.⋆ Continuous colormaps are heav-

⋆ There are many syn-
onyms for segmented color-
map: quantized color-
map, stepped colormap,
binned colormap, discret-
ized colormap, and dis-
crete colormap.

ily used for showing quantitative attributes, especially those as-
sociated with inherently spatial fields. Segmented colormaps are
suitable for categorical data. For ordinal data, segmented color-
maps would emphasize its discrete nature, while continuous would
emphasize its ordered nature. Bivariate colormaps encode two at-

" Continuous versus dis-
crete data semantics is dis-
cussed in Section 2.4.3.

tributes simultaneously. While bivariate colormaps are straight-
forward to understand when the second attribute is binary, with
only two levels, they are more difficult for people to interpret when
both attributes have multiple levels.

226 10. Map Color and Other Channels

Binary

Diverging

Categorical

Sequential

Categorical

Categorical

Figure 10.6. The colormap categorization partially mirrors the data types: cat-
egorical versus ordered, and sequential and diverging within ordered. Bivariate
encodings of two separate attributes at once is safe if one has only two levels,
but they can be difficult to interpret when both attributes have multiple levels. Af-
ter [Brewer 99].

10.3.1 Categorical Colormaps
A categorical colormap uses color to encode categories and group-
ings. Categorical colormaps are normally segmented.⋆ They are⋆ Categorical colormaps

are also known as qualita-
tive colormaps.

very effective when used appropriately; for categorical data, they
are the next best channel after spatial position.

Categorical colormaps are typically designed by using color as
an integral identity channel to encode a single attribute, rather
than to encode three completely separate attributes with the three
channels of hue, saturation, and luminance.

The number of discriminable colors for coding small separated
regions is limited to between six and twelve bins. You should re-
member to include background color and any default object colors
in your total count: some or all of the most basic choices of black,
white, and gray are often devoted to those uses. Easily nameable
colors are desirable, both for memorability and ability to discuss
them using words. A good set of initial choices are the fully sat-
urated and easily nameable colors, which are also the opponent

10.3. Colormaps 227

(a) (b)

Figure 10.7. Saturation and area. (a) The ten-element low-saturation map works well with large areas. (b) The
eight-element high-saturation map would be better suited for small regions and works poorly for these large areas.
Made with ColorBrewer, http://www.colorbrewer2.org.

color axes: red, blue, green, and yellow. Other possibilities when
more colors are needed are orange, brown, pink, magenta, purple,
and cyan. However, colormap design is a tricky problem: careful
attention must be paid to luminance and saturation. Luminance
constrast is a major issue: for some uses, the colors should be
close in luminance to avoid major differences in salience and to
ensure that all can be seen against the same background. For
example, fully saturated yellow and green will have much less lu-
minance contrast against a white background than red and blue.
For other uses, colors should be sufficiently different in luminance
that they can be distinguished even in black and white. Moreover,
colormaps for small regions such as lines should be highly satu-
rated, but large regions such as areas should have low saturation.
Thus, the appropriate colormap may depend on the mark type.

A good resource for creating colormaps is ColorBrewer at http:
//www.colorbrewer2.org, a system that incorporates many percep-
tual guidelines into its design in order to provide safe suggestions.
It was used to create both the ten-element low-saturation map in
Figure 10.7(a) and the eight-element high-saturation map in Fig-
ure 10.7(b). The low-saturation pastel map is well suited for large
regions, leaving fully saturated colors for small road marks. In
contrast, the eight-element map that uses highly saturated colors
is much too bright for the large areas shown here, but would be a
good fit for small line or point marks.

228 10. Map Color and Other Channels

(a) (b)

Figure 10.8. Ineffective categorical colormap use. (a) The 21 colors used as an
index for each mouse chromosome can indeed be distinguished in large regions
next to each other. (b) In noncontiguous small regions only about 12 bins of color
can be distinguished from each other, so a lot of information about how regions in
the mouse genome map to the human genome is lost. From [Sinha and Meller 07,
Figure 2].

Figure 10.8 illustrates an attempt to use categorical color that
is ineffective because of a mismatch between the number of color
bins that we can distinguish in noncontiguous small regions and
the number of levels in the categorical attribute being encoded.
Figure 10.8(a) shows that one color has been assigned to each of
the 21 chromosomes in the mouse. All 21 of these colors can in-
deed be distinguished from each other in this view that acts as a
legend and an index, because regions are large and the most subtle
differences are between regions that are right next to each other.

In Figure 10.8(b), the regions of the human chromosomes that
correspond to those in the mouse chromosomes have been col-
ored to illustrate how genomic regions have moved around as the
species evolved independently from each other after diverging from
a common ancestor. In this case, the colored regions are much
smaller and not contiguous. The 21 colors are definitely not dis-
tinguishable from each other in this view: for example, only about
three bins of green can be distinguished in the human view, rather

10.3. Colormaps 229

than the full set of seven in the mouse view. Similarly, the full
set of five pinks and purples in the mouse view has collapsed into
about three distinguishable bins in the human view. In total, only
around 12 bins of color can be distinguished in the human view.

When you are faced with the problem of discriminability mis-
match, there are two good design choices. One choice is to reduce
the number of bins explicitly through a deliberate data transfor-
mation that takes into account the nature of the data and task, so
that each bin can be encoded with a distinguishable color. This
choice to derive a new and smaller set of attributes is better than
the inadvertent segmentation into bins that arises from the user’s
perceptual system, which is unlikely to match meaningful divisions
in the underlying data. For example, the attribute may have hier-
archical structure that can be exploited to derive meaningful ag-
gregate groups, so that one color can be used per group. Another
possibility is to filter the attributes to only encode a small set of
the most important ones with color, and aggregate all of the rest
into a new category of other; the Constellation system analyzed in

" Aggregation and filtering
idioms are covered in Chap-
ter 13.Section 15.8 takes this approach to color coding links, where a few

dozen categories were narrowed down to fit within eight bins.
The other choice is to use a different visual encoding idiom that

uses other visual channels instead of, or in addition to, the color
channel alone. Figure 10.9 shows an example of systematically
considering a large space of visual encoding possibilities for visu-
alizing biological experiment workflows. The dataset has 27 cate-
gorical levels in total that are gathered into seven categories with
between three and seven levels each. Seven designs were consid-
ered, using multiple channels in addition to color: shape, size,
and more complex glyphs that evoke metaphoric associations. Fig-
ure 10.10 shows the final choice made, where the color channel
was only used to encode the four levels in category S7, and other
channels were used for the other categories.

10.3.2 Ordered Colormaps
An ordered colormap is appropriate for encoding ordinal or quan-
titative attributes. The two major variants of continuous colormaps
for ordered data have expressiveness charactistics that should
match up with the attribute type. A sequential colormap ranges
from a minimum value to a maximum value. If only the luminance
channel is used, the result is a grayscale ramp. When incorporat-
ing hue, one end of the ramp is a specific hue at full saturation
and brightness. If saturation is the variable, the other end is pale

230 10. Map Color and Other Channels

Data
Collection

Data
Processing

Data
Analysis

In Vitro

In Vivo

In Silico

design option 7design option 6design option 5design option 4design option 3design option 1 design option 2

Inputs and
Outputs

Process

Device

Chemical

Data

Biological

Molecule.

Cellular
Part

Cell

Tissue

Organ

Organism

Population

Material
induced
pertubation.

Behaviourally
induced
pertubation.

Physically
induced
pertubation.

Material
perturbation

Material
separation

Material
amplification

Material
combination

Material
collection

S2
S5

S4

Figure 10.9. Effective categorical colormap use: A large space of visual en-
coding possibilities for 27 categories was considered systematically in addition to
the color channel, including size and shape channels and more complex glyphs.
From [Maguire et al. 12, Figure 5].

10.3. Colormaps 231

S6 | 3 levels
Design Option 6.

S6 > S3 | 3 levels
Design Option 6

S6 > S2 | 5 levels
Design Option 7

S6 > S2 > S5 | 7 levels
Design Option 7

S6 > S2 > S4 | 3 levels
Design Option 5

S6 > S2 > S4 > S5 | 7 levels
Design Option 7

S0 | 2 levels
Design Option 6.

S7 | 4 levels
Design Option 1.

Not detailed in this example.
more

Figure 10.10. Effective categorical colormap use: The final design uses the color
channel for only four of the categories. From [Maguire et al. 12, Figure 6].

or white; when luminance is the varying quantity, the other end is
dark or black. A diverging colormap has two hues at the endpoints
and a neutral color as a midpoint, such as white, gray, or black, or
a high-luminance color such as yellow.

The question of how many unique hues to use in continuous
colormaps depends on what level of structure should be empha-
sized: the high-level structure, the middle range of local neigh-
borhoods, or fine-grained detail at the lowest level. Figure 10.11
shows the same fluid flow data with two different colormaps. Fig-
ure 10.11(a) emphasizes mid-level neighborhood structure with
many hues. Figure 10.11(b) emphasizes large-scale structure by
ranging between two fully saturated hues, with saturation smoothly
varying to a middle point: in this sequential case, the ends are pur-
ple and yellow, and the midpoint is gray.

One advantage of the rainbow colormap shown in Figure 10.11(a)
is that people can easily discuss specific subranges because the

232 10. Map Color and Other Channels

(a) (b)

Figure 10.11. Rainbow versus two-hue continuous colormap. (a) Using many hues, as in this rainbow colormap,
emphasizes mid-scale structure. (b) Using only two hues, the blue–yellow colormap emphasizes large-scale struc-
ture. From [Bergman et al. 95, Figures 1 and 2].

differences are easily nameable: “the red part versus the blue part
versus the green part”. In colormaps that use just saturation or
luminance changes, there are only two hue-based semantic cat-
egories: “the purple side versus the yellow side”. It is not easy
to verbally distinguish between smaller neighborhoods—we cannot
easily demarcate the “sort-of-bright purple” from the “not-quite-so-
bright purple” parts.

However, rainbow colormaps suffer from three serious problems
at the perceptual level; it is rather unfortunate that they are a
default choice in many software packages. Figure 10.12 illustrates
all three problems. First, hue is used to indicate order, despite
being an identity channel without an implicit perceptual ordering.
Second, the scale is not perceptually linear: steps of the same size
at different points in the colormap range are not perceived equally
by our eyes. A range of 1000 units in Figure 10.12(a) has different
characteristics depending on where within the colormap it falls.
While the range from –2000 to –1000 has three distinct colors,
cyan and green and yellow, a range of the same size from –1000
to 0 simply looks yellow throughout. Third, fine detail cannot be
perceived with the hue channel; the luminance channel would be
a much better choice, because luminance contrast is required for
edge detection in the human eye.

One way to address all three problems is to design monotoni-
cally increasing luminance colormaps: that is, where the multiple
hues are ordered according to their luminance from lowest to high-

10.3. Colormaps 233

(a) (b)

Figure 10.12. Rainbow versus multiple-hue continuous colormap with monotonically increasing luminance.
(a) Three major problems with the common continuous rainbow colormap are perceptual nonlinearity, the expres-
sivity mismatch of using hue for ordering, and the accuracy mismatch of using hue for fine-grained detail. (b) A
colormap that combines monotonically increasing luminance with multiple hues for semantic categories, with a clear
segmentation at the zero point, succeeds in showing high-level, mid-level, and low-level structure. From [Rogowitz
and Treinish 98, Figure 1].

est. The varying hues allow easy segmentation into categorical re-
gions, for both seeing and describing mid-level neighborhoods. Lu-
minance is a magnitude channel, providing perceptual ordering. It
supports both high-level distinctions between one end (“the dark
parts”) and the other (“the light parts”) and low-level structure per-
ception because subtle changes in luminance are more accurately
perceived than subtle changes in hue. Figure 10.12(b) illuminates
the true structure of the dataset with a more appropriate colormap,
where the luminance increases monotonically. Hue is used to cre-
ate a semantically meaningful categorization: the viewer can dis-
cuss structure in the dataset, such as the dark blue sea, the cyan
continental shelf, the green lowlands, and the white mountains.
The zero point matches with sea level, a semantically meaningful
point for this dataset.

It is possible to create a perceptually linear rainbow colormap,
but at the cost of losing part of the dynamic range because the fully
saturated colors are not available for use. Figure 10.13 shows an
example created with a system for calibrating perceptually based
colormaps [Kindlmann 02]. The perceptually nonlinear rainbow

234 10. Map Color and Other Channels

(a)

(b)

(c)

Figure 10.13. Appropriate use of rainbows. (a) The standard rainbow colormap
is perceptually nonlinear. (b) Perceptually linear rainbows are possible [Kindl-
mann 02], but they are less bright with a decreased dynamic range. (c) Segmented
rainbows work well for categorical data when the number of categories is small.

in Figure 10.13(a) can be converted to the perceptually linear one
shown in Figure 10.13(b); however, it is so much less bright than
the standard one that it seems almost dingy, so this solution is not
commonly used.

Rainbows are not always bad; a segmented rainbow colormap is
a fine choice for categorical data with a small number of categories.
Figure 10.13(c) shows an example. Segmented rainbows could
also be used for ordered data; while not ideal, at least the percep-
tual nonlinearity problem is solved because the colormap range is
explicitly discretized into bins. Using a segmented colormap on
quantitative data is equivalent to transforming the datatype from
quantitative to ordered. This choice is most legitimate when task-
driven semantics can be used to guide the segmentation into bins.
The intuition behind the technique is that it is better to deliberately
bin the data explicitly, rather than relying on the eye to create bins
that are of unequal size and often do not match meaningful divi-
sions in the underlying data.

10.3.3 Bivariate Colormaps

The safest use of the color channel is to visually encode a single
attribute; these colormaps are known as univariate. Figure 10.6
includes several colormaps that encode two separate attributes,
called bivariate. When one of the two attributes is binary, meaning
it has only two levels, then it is straightforward to create a com-

10.3. Colormaps 235

prehensible bivariate colormap with two families of colors by fixing
a base set of hues and varying their saturation, as in the bivariate
categorical–binary and diverging–binary examples in Figure 10.6.
This approach can also be useful for a single categorical attribute
that has a hierarchical structure.

When both attributes are categorical with multiple levels, re-
sults will be poor [Wainer and Francolini 80], and thus there are
no bivariate categorical–categorical maps in Figure 10.6. The case
of encoding combinations of two sequential or diverging attributes
with multiple levels is a middle ground. Figure 10.6 shows several
examples with three levels for each attribute: sequential–sequential,
diverging–diverging, diverging–sequential, and categorical–sequen-
tial. While these colormaps do appear frequently in vis systems,
you should be aware that some people do have difficulty in inter-
preting their meaning.

10.3.4 Colorblind-Safe Colormap Design

Designers using color should take the common problem of red–
green color blindness into account. It is a sex-linked inherited trait
that affects 8% of males and a much smaller proportion of females,
0.5%. In the common forms of color blindness the ability to sense
along the red–green opponent color axis is limited or absent. The

" Opponent color is dis-
cussed in Section 10.2.

problem is not limited to simply telling red apart from green; many
pairs that are discriminable to people with normal color vision are
confused, including red from black, blue from purple, light green
from white, and brown from green.

On the theoretical side, the safest strategy is to avoid using
only the hue channel to encode information: design categorical
colormaps that vary in luminance or saturation, in addition to hue.
Clearly, avoiding colormaps that emphasize red–green, especially
divergent red–green ramps, would be wise. In some domains there
are strong conventions with the use of red and green, so those
user expectations can be accommodated by ensuring luminance
differences between reds and greens.

" For example, the histor-
ical and technical reasons
behind red–green usage in
bioinformatics domain are
discussed in Section 7.5.2.

On the practical side, an excellent way to ensure that a design
uses colors that are distinguishable for most users is to check it
with a color blindness simulator. This capability is built into many
desktop software tools including Adobe Illustrator and Photoshop,
and also available through web sites such as http://www.rehue.
net, http://www.color-blindness.com, and http://www.etre.com/
tools/colourblindsimulator.

236 10. Map Color and Other Channels

10.4 Other Channels

While the previously discussed channels pertaining to position and
color are highly salient, other visual channels are also an impor-
tant part of the visual encoding design space. Other magnitude
visual channels include the size channels of length, area, and vol-
ume; the angle/orientation/tilt channel; and curvature. Other
identity channels are shape and motion. Textures and stippling
use combinations of multiple channels.

10.4.1 Size Channels

Size is a magnitude channel suitable for ordered data. It interacts
with most other channels: when marks are too small, encodings
in another channel such as shape or orientation simply cannot be
seen. Size interacts particularly strongly with color hue and color
saturation.

Length is one-dimensional (1D) size; more specifically, height is
vertical size and width is horizontal size. Area is two-dimensional
(2D) size, and volume is three-dimensional (3D) size. The accuracy
of our perceptual judgements across these three channels varies
considerably.

Our judgements of length are extremely accurate. Length judge-
ments are very similar to unaligned planar position judgements:
the only channel that is more accurate is aligned planar position.

In contrast, our judgement of area is significantly less accurate.
Stevens assigns a power law exponent of 0.7 for area, as shown in
Figure 5.7. The area channel is in the midde of the rankings, below
angle but above 3D depth.

The volume channel is quite inaccurate. The volume channel is
at the bottom of the rankings, in an equivalence class with curva-
ture. Encoding with volume is rarely the right choice.

A larger-dimensional size coding clearly subsumes a smaller-
dimensional one: length and area cannot be simultaneously used
to encode different dimensions. Similarly, the combination of
smaller-dimensional sizes is usually integral rather than separa-
ble, as illustrated in Figure 5.10 where the combination of small
width, large width, small height, and large height yielded three
groups rather than four: small areas, large areas, and flattened
areas. It is possible that people asked to make area judgements
might take the shortcut of simply making length judgements.

10.4. Other Channels 237

Sequential ordered
line mark or arrow glyph

(a)

Diverging ordered
arrow glyph

(b)

Cyclic ordered
arrow glyph

(c)

Figure 10.14. Tiltmaps using the angle channel to show three different types of
ordered data. (a) A sequential attribute can be shown with either a line mark or
an arrow glyph in one quadrant. (b) A diverging attribute can be shown with two
quadrants and an arrow glyph. (c) A cyclic attribute can be shown with all four
quadrants and arrow glyphs.

10.4.2 Angle Channel

The angle channel encodes magnitude information based on the
orientation of a mark: the direction that it points. There are two
slightly different ways to consider orientation that are essentially
the same channel. With angle, the orientation of one line is judged
with respect to another line. With tilt, an orientation is judged
against the global frame of the display.⋆ While this channel is ⋆ The terms angle, tilt, and

orientation are often used
as synonyms.

somewhat less accurate than length and position, it is more accu-
rate than area, the next channel down on the effectiveness ranking.

Angles can act as a sequential channel within a single 90 ◦ quad-
rant, as shown in Figure 10.14(a). However, as shown in Fig-
ure 10.14(c), an angle also has cyclic properties: a mark returns
to its starting position after it swings all the way around. A simple
line mark cycles four times when swinging around a full circle of
360◦. A more complex shape like an arrow, where the top can be
distinguished from the bottom, cycles once for each full circle turn.
Tilting an arrow glyph through a half-circle range of 180◦ yields a
diverging tiltmap, as shown in Figure 10.14(b), where the central
vertical position acts like the central neutral color that is the zero
point in a diverging colormap, lying between orientations to the left
or right.

The accuracy of our perception of angle is not uniform. We
have very accurate perceptions of angles near the exact horizontal,
vertical, or diagonal positions, but accuracy drops off in between
them. We can tell 89◦ from 90◦, 44◦ from 45◦, and 1◦ from 0◦;
however, we cannot tell 37◦ from 38◦.

238 10. Map Color and Other Channels

10.4.3 Curvature Channel
The curvature channel is not very accurate, and it can only be used
with line marks. It cannot be used with point marks that have no
length, or area marks because their shape is fully constrained. The
number of distinguishable bins for this channel is low, probably
around two or three; it is in an equivalence class with volume (3D
size) at the bottom of the magnitude channel ranking.

10.4.4 Shape Channel
The term shape is a catch-all word for a complex perceptual phe-
nomenon. Vision scientists have identified many lower-level fea-
tures that we can preattentively identify, including closure, cur-
vature, termination, intersection, and others. For the purposes
of analyzing visual encoding with marks and channels, I simplify
by considering shape as a identity channel that can be used with
point and line marks. Applying shape to point marks is the com-
mon case, and is easy to understand. Applying the shape channel
to line marks results in stipple patterns such as dotted and dashed
lines, as discussed below. The shape channel cannot be applied to
area marks because their shape is constrained by definition.

If the point size is sufficiently large, the number of discriminable
bins for the shape channel is dozens or even hundreds. However,
there is a strong interaction between shape and size. When the
region in which the shape must be drawn is small, then far fewer
discriminable bins exist. For example, given a limit of 10×10 pixels,
with careful design it might be possible to create roughly a dozen
distinguishable shapes.

Shape can interfere with other channels in the same way that
size coding does, and it can interfere with size coding itself. For
example, filled-in shapes like disks are a good substrate for also
encoding with color hue. Sparse line-oriented marks like crosses
have fewer pixels available for color coding, so that channel will be
impaired.

10.4.5 Motion Channels
Several kinds of motion are also visual channels, including direc-
tion of motion, velocity of motion, and flicker frequency. In order
to use motion for visual encoding given a fixed spatial layout, the
typical motion is a cyclic pattern where items somehow oscillate
around their current location, so that they do not move outside

10.4. Other Channels 239

the viewpoint, as would occur if they just continued to move in a
single direction.

Motion is less studied than the other visual channels, but some
results are known already. Motion is extremely salient, and more-
over motion is very separable from all other static channels. In
particular, it is strongly separable from the highly ranked channels
typically used for showing groups and categories, such as color and
spatial position.

The strength and weakness of motion is that it strongly draws
attention; it is nearly impossible to ignore. The idea behind using
separable channels for visual encoding is that the viewer can se-
lectively attend to any of the channels; however, directing attention
selectively to the nonmoving channels may be difficult when mo-
tion is used. Flicker and blinking are so difficult to ignore that they
can be very annoying and should only be used with great care.

It is not clear whether different motion channels are separable
from each other, or how many discriminable bins exist in each.
A safe strategy with motion is to create a single combined motion
channel and use it for a binary category of just two levels: items
that move versus items that don’t move. Thus, although an indi-
vidual motion subchannel such as velocity could in theory act as a
magnitude channel, I simplify the complex situation by classifying
motion as a identity channel, much like shape.

The motion channels are most appropriate for highlighting,
where drawing the user’s attention away from the rest of the scene
is exactly the goal, particularly when the highlighting is transitory
rather than ongoing. Temporary highlighting is often used with

" Section 11.4.2 covers
highlighting.

lightweight actions such as mouseover or clicking, as opposed to
more heavyweight actions such as using search, where a text string
is typed into a control panel. Many uses of highlighting are indeed
binary, where the selected items just need to be distinguished from
the nonselected ones. Even blinking could be appropriate in cases
where very strong emphasis is desired, for example with dynamic
layouts where new items at multiple locations have just been added
to the view in a single timestep.

10.4.6 Texture and Stippling
The term texture refers to very small-scale patterns. Texture is
also a complex perceptual phenomenon that can be simplified by
considering it as the combination of three perceptual dimensions:
orientation, scale, and contrast. The first two pertain to the indi-
vidual texture elements and have obvious mappings to the angle

240 10. Map Color and Other Channels

and size channels, respectively. Contrast refers to luminance con-
strast, which is related to the density of the texture elements; it
maps to the luminance channel.

Texture can be used to show categorical attributes, in which
case the goal is to create patterns that are distinguishable from
each other using the combination of all three channels. In this
case, with sufficient care it is possible to create at least one or two
dozen distingishable bins.

Texture can also be used to show ordered attributes, for exam-
ple, by mapping separate attributes to each of the three channels.
In this case, no more than three or four bins can be distinguished
for each. Another possibility is to use all three channels in com-
bination to encode more bins of a single attribute; with careful
design, around a dozen bins can be distinguishable.

The term stippling means to fill in regions of drawing with short
strokes. It is a special case of texture. Stippling is still in regular
use for lines; a familiar example is the use of dotted or dashed
lines. Stippling was heavily used for area marks with older printing
technology because it allows shades of gray to be approximated
using only black ink; now that color and grayscale printing are
cheap and pervasive, area stippling is less popular than in the
past.⋆

⋆ The terms hatching and
cross-hatching are syn-
onyms for stippling in two-
dimensional areas.

10.5 Further Reading
The Big Picture Ware’s textbook is an excellent resource for further

detail on all of the channels covered in this chapter [Ware 13].

Color Theory Stone’s brief article [Stone 10] and longer book
[Stone 03] are an excellent introduction to color.

Colormap Design The design of segmented colormaps has been ex-
tensively discussed in the cartographic literature: Brewer of-
fers very readable color use guidelines [Brewer 99] derived
from that community, in conjunction with the very useful Col-
orBrewer tool at http://www.colorbrewer2.org. Early guide-
lines on quantitative colormap creation and the reasons to
avoid rainbow colormaps are in series of papers [Bergman
et al. 95,Rogowitz and Treinish 96,Rogowitz and Treinish 98],
with more recent work continuing the struggle against rain-
bows as a default [Borland and Taylor 07]. An empirical study
of bivariate colormaps showed their serious limitations for en-
coding two categorical attributes [Wainer and Francolini 80].

10.5. Further Reading 241

Motion An empirical study investigated different kinds of motion
highlighting and confirmed its effectiveness in contexts where
color coding was already being used to convey other informa-
tion [Ware and Bobrow 04].

Texture Ware proposes breaking down texture into orientation,
scale, and constrast subchannels, as part of a thorough dis-
cussion of the use of texture for visual encoding in his text-
book [Ware 13, Chapter 6].

Manipulate

Change over Time

Select

Navigate

Item Reduction

Zoom

Pan/Translate

Constrained

Geometric or Semantic

Attribute Reduction

Slice

Cut

Project

Figure 11.1. Design choices for idioms that change a view.

Manipulate View

Chapter 11

11.1 The Big Picture

Figure 11.1 shows the design choices for how to manipulate a view:
to change anything about it, to select items or attributes within it,
and to navigate to a different viewpoint.

The ways to change a view cover the full set of all other design
choices for idioms. A change could be made from one choice to
another to change idioms, and any of the parameters for a par-
ticular idiom can be changed. Any aspect of visual encoding can
be changed, including the ordering, any other choice pertaining
to the spatial arrangement, and the use of other visual channels
such as color. Changes could be made concerning what elements
are filtered, the level of detail of aggregation, and how the data is
partitioned into multiple views.

A change often requires a set of items or attributes within the
vis as input. There are several choices about how a user can se-
lect elements: what kind of elements can be targets, how many
selection types are supported, how many elements can be in the
selected set, and how to highlight the elements.

Navigation is a change of viewpoint; that is, changing what is
shown in a view based on the metaphor of a camera looking at the
scene from a moveable point of view. It’s a rich enough source
of design choices that it’s addressed separately in the framework
as a special case. Zooming in to see fewer items in more de-
tail can be done geometrically, matching the semantics of real-
world motion. With semantic zooming, the way to draw items
adapts on the fly based on the number of available pixels, so ap-
pearance can change dramatically rather than simply shrinking or
enlarging. The camera metaphor also motivates the idea that at-
tributes are assigned to spatial dimensions, leading to the slice
idiom of extracting a single slice from the view volume and the cut
idiom of separating the volume into two parts with a plane and

243

244 11. Manipulate View

eliminating everything on one side of it. The project idiom reduces
the number of dimensions using one of many possible transforma-
tions.

11.2 Why Change?

Datasets are often sufficiently large and complex that showing ev-
erything at once in a single static view would lead to overwhelming
visual clutter. There are five major options for handling complex-
ity; a view that changes over time is one of them. These five choices

" One is deriving new data
as discussed in Chapter 3.
The other three options
are covered in subsequent
chapters: faceting the data
by partitioning it into multi-
ple juxtaposed views or su-
perimposed layers in Chap-
ter 12, reducing the amount
of data to show within a
view in Chapter 13, and em-
bedding focus and context
information together within
a single view in Chapter 14.

are not mutually exclusive and can be combined together.
Changing the view over time is the most obvious, most popu-

lar, and most flexible choice in vis design. The most fundamental
breakthrough of vis on a computer display compared with printed
on paper is the possibility of interactivity: a view that changes
over time can dynamically respond to user input, rather than be-
ing limited to a static visual encoding. Obviously, all interactive
idioms involve a view that changes over time.

11.3 Change View over Time

The possibilities for how the view changes can be based on any of
the other design choices of how to construct an idiom: change the
encoding, change the arrangement, change the order, change the
viewpoint, change which attributes are filtered, change the aggre-
gation level, and so on.

For example, the visual encoding could be changed to a com-
pletely different idiom. Some vis tools allow the user to manually
change between several different idioms, such as switching from a
node–link layout to a matrix layout of a network. Giving the user
control of the encoding is particularly common in general-purpose
systems designed to flexibly accommodate a large range of possi-
ble datasets, rather than special-purpose systems fine tuned for a
very particular task. Figure 11.2 shows a sequence of different vi-
sual encodings of the same product sales dataset created with the
Tableau system, which supports fluidly moving between encodings
via drag and drop interactions to specify which attributes to en-
code with which channels. Figure 11.2(a) shows the data encoded
with simple bars, changed to stacked bars in Figure 11.2(b). Fig-
ure 11.2(c) shows a recommendation of alternate encodings that
are good choices taking into account the types and semantics of

11.3. Change View over Time 245

(a) (b)

(c) (d)

Figure 11.2. Tableau supports fluid changes between visual encoding idioms with drag and drop interaction.
(a) Data encoded with bars. (b) Data encoded with stacked bars. (c) The user selects a completely different
visual encoding. (d) Data encoded using geographic positions.

the attributes. Figure 11.2(d) shows the use of given spatial ge-
ometry as a substrate, with circular area marks size coded for the
sum of sales and color coded with a diverging red–green colormap
showing the average discount.

Another kind of view change is to alter some parameter of the
existing encoding, such as the range of possible mark sizes.

Many kinds of change involve rearrangement of some or all of
the items in the view. Reordering, often called sorting, is a power-

246 11. Manipulate View

ful choice for finding patterns in a dataset by interactively chang-
ing the attribute that is used to order the data. For example, a
common interaction with tables is to sort the rows according to
the values in a chosen column. The same principle holds for more
exotic visual encodings as well. The power of reordering lies in the
privileged status of spatial position as the highest ranked visual
channel. Reordering data spatially allows us to invoke the pattern-

" Visual channels are dis-
cussed in detail in Chap-
ter 5.

finding parts of our visual system to quickly check whether the
new configuration conveys new information. It can be used with
any categorical attribute. In contrast, reordering does not make
sense for ordered attributes, which have a given order already.

" Ordering regions contain-
ing categorical data is cov-
ered in Section 7.5.

Example: LineUp

The LineUp system is designed to support exploration of tables with many
attributes through interactive reordering and realigning. In addition to
sorting by any individual attribute, the user can sort by complex weighted
combinations of multiple attributes. LineUp is explicitly designed to sup-
port the comparison of multiple rankings.

Figure 11.3 compares several different rankings of top universities.
On the left is a customized combination of attributes and weights for the
2012 data, and in the middle is the official ranking for 2012, with colored

Figure 11.3. The LineUp system for comparing multiattribute rankings with reordering and realignment. From [Gratzl
et al. 13, Figure 1].

11.3. Change View over Time 247

(a) (b)

(c) (d)

Figure 11.4. Changing the alignment in Lineup. (a) Classical stacked bars. (b) Diverging stacked bars. (c) Ordered
stacked bars. (d) Separately aligned bars: small multiple bar charts. From [Gratzl et al. 13, Figure 4].

stacked bar charts showing the contribution of the component attributes
for both. The next two columns show a compressed view with a single
summary bar for two more rankings, using the data for years 2011 and
2010, and the last three columns have a collapsed heatmap view with the
value encoded in grayscale rather than with bar length. The uncollapsed
columns are scented widgets, with histograms showing the distributions
within them at the top. Between the bar chart columns are slope graphs,

" Scented widgets are cov-
ered in Section 13.3.1.

where connecting line marks link the same items together.⋆ Items that do ⋆ Slope graphs are also
known as bump charts.not change their ranking between neighboring columns are connected by

straight lines, while highly sloped lines that cross many others show items
whose ranking changed significantly.

Figure 11.4 shows the results of changing the alignment to each of
the four different possibilities. In addition to classical stacked bars as
in Figure 11.4(a), any of the attributes can be set as the baseline from
which the alignment diverges, as in Figure 11.4(b). Figure 11.4(c) shows
the bars sorted by decreasing size separately in each row, for the purpose
of emphasizing which attributes contribute most to that item’s score. Fig-
ure 11.4(d) shows each attribute aligned to its own baseline, which yields
a small-multiple view with one horizontal bar chart in each column. When

" Partitioning data into
small-multiple views is cov-
ered in Section 12.4.

248 11. Manipulate View

the alignment is changed, an animated transition between the two states
occurs.

" Animated transitions are
discussed in the next exam-
ple. In contrast to many of the previous examples of using derived data,

where the vis designer is the one who makes choices about deriving data,
with LineUp the user decides what data to derive on the fly during an
analysis session.

System LineUp
What: Data Table.

What: Derived Ordered attribute: weighted combination of selected
attributes.

How: Encode Stacked bar charts, slope graphs.

How: Manipulate Reorder, realign, animated transitions.

Why: Task Compare rankings, distributions.

Many kinds of change involve reducing or increasing the amount
of data that is shown: changes to aggregation and filtering are at
the heart of interactive data reduction idioms.

" Design choices for re-
ducing and increasing the
data shown are discussed
in Chapter 13.

Many kinds of changes to a view over time fall into the gen-
eral category of animation, including changes to the spatial layout.
While animation has intuitive appeal to many beginning design-
ers, it is valuable to think carefully about cognitive load and other
trade-offs.

" The Eyes Beat Memory
rule of thumb in Section
6.5 discusses some of the
strengths and weaknesses
of animation.

Example: Animated Transitions

One of the best-justified uses of animation is the idiom of animated tran-
sition, where a series of frames is generated to smoothly transition from
one state to another. Animated transitions are thus an alternative to a
jump cut, where the display simply changes abruptly from one state to the
next.⋆ This idiom is often used for navigation, in which case the two states⋆ The term jump cut

comes from cinematogra-
phy.

are different camera viewpoints. More generally, they can be constructed

" Navigation is covered in
Section 11.5.

to bridge between the start and end state of any kind of change, includ-
ing reordering items, filtering by adding or removing items from the view,
changing the visual encoding, or updating item values as they change over
time.

The benefit of animated transitions is that they help users maintain a
sense of context between the two states by explicitly showing how an item
in the first state moves to its new position in the second state, rather than
forcing users to do item tracking on their own using internal cognitive and
memory resources. These transitions are most useful when the amount
of change is limited, because people cannot track everything that occurs

11.4. Select Elements 249

Figure 11.5. Frames from an animated transition showing zoom between levels in a compound network arranged
as an adjacency matrix. From [van Ham 03, Figure 4].

if many items change in different ways all over the frame. They work well
when either a small number of objects change while the rest stay the same,
or when groups of objects move together in similar ways. Transitions can
also be broken down into a small number of stages. An empirical study
showed that carefully designed animated transitions do indeed support
better graphical perception of change [Heer and Robertson 07].

Figure 11.5 shows an example of five frames from an animated transi-
tion of a network shown as an adjacency matrix. The data type shown is

" Visually encoding a net-
work as an adjacency ma-
trix is covered in Sec-
tion 9.3.

a compound network, where there is a cluster hierarchy associated with
the base network. The transition shows a change from one level of hier-

" Compound networks are
discussed in Section 9.5.

archical aggregation to the next, providing more detail. Accordingly, the

" Hierarchical aggregation
is covered in Section 13.4.1.

scope of what is shown narrows down to show only a subset of what is
visible in the first frame. The middle block gradually stretches out to fill
all of the available space, and additional structure appears within it; the
other blocks gradually squish down to nothing, with their structure grad-
ually becoming more aggregated as the amount of available screen space
decreases.

Idiom Animated Transitions
What: Data Compound network.

How: Manipulate Change with animated transition. Navigate between
aggregation levels.

11.4 Select Elements
Allowing users to select one or more elements of interest in a vis
is a fundamental action that supports nearly every interactive id-
iom. The output of a selection operation is often the input to a
subsequent operation. In particular, the change choice is usually
dependent on a previous select result.

250 11. Manipulate View

11.4.1 Selection Design Choices

A fundamental design choice with selection is what kinds of ele-
ments can be selection targets. The most common element is data
items, and another element is links in the case of network data. In
some vis tools, data attributes are also selectable. It’s also com-
mon to be able to select by levels within an attribute; that is, all
items that share a unique value for that attribute. When the data
is faceted across multiple views, then a view itself can also be a
selection target.

" Multiple views are cov-
ered further in Chapter 12.

The number of independent selection types is also a design
choice. In the simplest case, there is only one kind of selection:
elements are either selected or not selected. It’s also common to
support two kinds of selection, for example in some cases a mouse
click produces one kind of selection and a mouse hover, where the
cursor simply passes over the object, produces another. It’s also
common to have multiple kinds of clicks. The low-level details of
interface hardware often come into play with this design choice.
With a mouse, clicks and hovers are easy to get, and if the mouse
has several buttons there are several kinds of clicks. If there is
also a keyboard, then key presses can be added to the mix, either
in addition to or instead of a multi-button mouse. Some kinds
of touch screens provide hover information, but others don’t. It’s
much more rare for hardware to support multiple levels of prox-
imity, such as nearby as an intermediate state between hover and
distant.

Another design choice is how many elements can be in the se-
lection set. Should there be exactly one? Can there be many?
Is a set of zero elements acceptable? Is there a primary versus
secondary selection? If many elements can be selected, do you
support only the selection of a spatially contiguous group of items,
or allow the user to add and remove items from the selection set in
multiple passes?

For some tasks there should only be one item selected at a time,
which means that choosing a new item replaces the old one. While
occasionally task semantics require that there must always be a
selected item, often it makes sense that the selection set could be
empty. In this case, selection is often implemented as a toggle,
where a single action such as clicking switches between select and
deselect. For example, a vis tool might be designed so that there
is a specific view of fixed size where detailed information about
a single selected item is shown. That choice implies the detail
selection set should have a maximum of one item at a time, and

11.4. Select Elements 251

a set size of zero can be easily accommodated by leaving the pane
blank.

In other tasks, it is meaningful to have many items selected at
once, so there must be actions for adding items, removing items,
and clearing the selection set. For example, a vis tool might al-
low the user to interactively assign items into any of seven main
groups, change the name of a group, and change the color of items
in the group. In this situation, it’s a good design choice to move
beyond simply using different selection types into a design that ex-
plicitly tracks group membership using attributes. For example, if
an element can only belong to one group, then a single categori-
cal attribute can be used to store group membership. If items can
belong to many, then the information can be stored with multiple
attributes, one for each group, with an indication for each item
whether it’s in that group or not. In this case, straightforward se-
lection can be used to pick a group as the current target and then
to add and remove items to that group. For most users, it would
be more natural to think about groups than about attribute levels,
but it’s sometimes useful to think about the underlying attribute
structure as a designer.

In the previous example the selection set could contain multiple
items, but all items within the set were interchangeable. Some ab-
stract tasks require a distinction between a primary and secondary
selection, for example, path traversal in a directed graph from a
source to a target node. Once again, some tasks require that these
sets contain only one item apiece, while other tasks may require
multi-item sets for one, the other, or both.

11.4.2 Highlighting
The action of selection is very closely tied to highlighting, where the
elements that were chosen are indicated by changing their visual
appearance in some way. Selection should trigger highlighting in
order to provide users with immediate visual feedback, to confirm
that the results of their operations match up with their intentions.

" The timing requirements
for this kind of visual feed-
back are discussed in Sec-
tion 6.8.

The requirement to highlight the selection is so well understood
that these two actions are sometimes treated as synonyms and
used interchangeably. However, you should consider two different
design choices that can be independently varied: the interaction
idiom of how the user selects elements and the visual encoding
idiom of how the selected elements are highlighted.

For data items, nearly any change of visual encoding strategy
can be used for highlighting. For example, it’s a very common

252 11. Manipulate View

design choice to highlight selected items by changing their color.
Another important caveat is that the highlight color should be suf-
ficiently different from the other colors that a visual popout effect
is achieved with sufficient hue, luminance, or saturation contrast.

" Popout is discussed in
Section 5.5.4.

A fundamental limitation of highlighting by color change is that
the existing color coding is temporarily hidden. For some abstract
tasks, that limitation constitutes a major problem. An alternative
design choice that preserves color coding is to highlight with an
outline. You could either add an outline mark around the selected
object or change the color of an existing outline mark to the high-
light color. It’s safest to highlight the items individually rather than
to assume the selection set is a spatially contiguous group, unless
you’ve built that selection constraint into the vis tool.

This choice may not provide enough visual salience when marks
are small, but it can be very effective for large ones. Another design
choice is to use the size channel, for example by increasing an
item’s size or the linewidth of a link. For links, it’s also common
to highlight with the shape channel, by changing a solid line to a
dashed one. These choices can be combined for increased salience,
for example, by highlighting lines with increased width and a color
change.

Another possible design choice is to use motion coding, such
as moving all selected points in small circular orbits oscillating
around their usual location, or by moving all selected items slightly
back and forth relative to their original position, or by having a
dash pattern crawl along selected links. Although this choice is
still unusual, Ware and Bobrow ran experiments finding that mo-
tion coding often outperformed more traditional highlighting ap-
proaches of coloring, outlining, and size changes [Ware and Bo-
brow 04].

If attributes are directly encoded with marks within a view, then
they can be highlighted with the same set of design choices as
data items. For example, a selected parallel coordinates axis could
be highlighted with a color change or by adding an outline. In
other cases, the attribute selection might be done through a con-
trol panel rather than in a full vis view, in which case the visual
feedback could be accomplished through standard 2D user inter-
face (UI) widgets such as radio buttons and lists. Similarly, the
highlighting for a selected view is often simply a matter of using
the existing UI widget support for windows in the user’s operating
system.

Another different design choice for highlighting is to add con-
nection marks between the objects in the selection set. This choice

11.4. Select Elements 253

to explicitly draw links is a contrast to the more implicit alternative
choices discussed above, where existing marks are changed.

Example: Context-Preserving Visual Links

Figure 11.6 shows the idiom of context-preserving visual links, where links
are drawn as curves that are carefully routed between existing elements
in a vis [Steinberger et al. 11]. The route takes into account trade-offs
between four criteria: minimizing link lengths, minimizing the occlusion
of salient regions, maximizing the difference between the link’s color and
the colors of the existing elements that it crosses, and maximizing the
bundling of links together.

" Edge bundling is dis-
cussed further in Sec-
tion 12.5.2.

Figure 11.6. The context-preserving visual links idiom is an example of the design choice to coordinate betweeen
views by explicitly drawing links as connection marks between items and regions of interest. From [Steinberger
et al. 11, Figure 1].

Idiom Context-Preserving Visual Links
What: Data Any data.

How: Encode Any encoding. Highlight with link marks connecting
items across views.

How: Manipulate Select any element.

(How: Coordinate) Juxtaposed multiple views.

254 11. Manipulate View

11.4.3 Selection Outcomes
Sometimes the outcome of selection is additional actions, beyond
simply highlighting. Selection is often a first step in a multistage
sequence, allowing the user to indicate specific elements that
should be the target of the next action. That is, the output of a
select action is often the input to the next action. Nearly all of

" Chained sequences of
tasks are discussed in Sec-
tion 1.14 and 3.7. the other major design choices of how idioms are constructed can

accommodate a selected set of elements as input. For example,
selected items might be filtered or aggregated, or their visual en-
coding could be changed. A selected set of regions or items might
be reordered within a view. A navigation trajectory could be con-
structed so that a selected item is centered within the view at the
end of an animated transition.

11.5 Navigate: Changing Viewpoint

Large and complex datasets often cannot be understood from only
a single point of view. Many interactive vis systems support a
metaphor of navigation, analogous to navigation through the phys-
ical world. In these, the spatial layout is fixed and navigation acts
as a change of the viewpoint.

The term navigation refers to changing the point of view from
which things are drawn. The underlying metaphor is a virtual cam-
era located in a particular spot and aimed in a particular direction.
When that camera viewpoint is changed, the set of items visible in
the camera frame also changes.

Navigation can be broken down into three components. The
action of zooming moves the camera closer to or farther from the
plane. Zooming the camera in close will show fewer items, which
appear to be larger. Zooming out so that the camera is far away
will show more items, and they will appear smaller. The action
of panning the camera moves it parallel to the plane of the im-
age, either up and down or from side to side.⋆ In 3D navigation,

⋆ In 2D navigation, the
term scrolling is a syn-
onym for panning.

the general term translating is more commonly used for any mo-
tion that changes camera position.⋆ The action of rotating spins

⋆ In this book, pan and
zoom are used to mean
translating the camera par-
allel to and perpendicular to
the image plane; this loose
sense matches the usage
in the infovis literature. In
cinematography, these mo-
tions are called trucking and
dollying. The action of
trucking, where the cam-
era is translated parallel to
the image plane, is dis-
tinguished from panning,
where the camera stays in
the same location and turns
to point in a different direc-
tion. The action of dollying,
where the camera is trans-
lated closer to the scene,
is distinguished from zoom-
ing by changing the focal
length of the camera lens.

the camera around its own axis. Rotation is rare in two-dimen-
sional navigation, but it is much more important with 3D
motion.

Since changing the viewpoint changes the visible set of items,
the outcome of navigation could be some combination of filtering
and aggregation. Zooming in or panning with a zoomed-in camera

11.5. Navigate: Changing Viewpoint 255

filters based on the spatial layout; zooming out can act as aggre-
gation that creates an overview.

" Filtering and aggregation
are covered in Chapter 13.

Navigation by panning or translating is straightfoward; zooming
is the more complex case that requires further discussion.

11.5.1 Geometric Zooming

An intuitive form of navigation is geometric zooming because it cor-
responds almost exactly with our real-world experience of walking
closer to objects, or grasping objects with our hands and moving
them closer to our eyes. In the 2D case, the metaphor is moving a
piece of paper closer to or farther from our eyes, while keeping it
parallel to our face.

11.5.2 Semantic Zooming

With geometric zooming, the fundamental appearance of objects is
fixed, and moving the viewpoint simply changes the size at which
they are drawn in image space. An alternative, nongeometric ap-
proach to motion does not correspond to simply moving a virtual
camera. With semantic zooming, the representation of the object
adapts to the number of pixels available in the image-space region
occupied by the object. The visual appearance of an object can
change subtly or dramatically at different scales.

For instance, an abstract visual representation of a text file
might always be a rectangular box, but its contents would change
considerably. When the box was small, it would contain only a
short text label, with the name of the file. A medium-sized box
could contain the full document title. A large box could accommo-
date a multiline summary of the file contents. If the representation
did not change, the multiple lines of text would simply be illegible
when the box was small.

Figure 11.7 shows an example from the LiveRAC system for an-
alyzing large collections of time-series data, in this case resource
usage for large-scale system administration [McLachlan et al. 08].
Line charts in a very large grid use semantic zooming, automati-
cally adapting to the amount of space available as rows and
columns are stretched and squished. When the available box is
tiny, then only a single categorical variable is shown with color
coding. Slightly larger boxes also use sparklines, very concise line
charts with dots marking the minimum and maximum values for
that time period. As the box size passes thresholds, axes are

256 11. Manipulate View

Figure 11.7. LiveRAC uses semantic zooming within a stretchable grid of time-
series line charts. From [McLachlan et al. 08, Figure 2b].

drawn and multiple line charts are superimposed. The stretch-
and-squish navigation idiom is an example of a focus+context ap-
proach.

" Focus+context ap-
proaches are discussed
further in Chapter 14.

11.5.3 Constrained Navigation

With unconstrained navigation, the camera can move anywhere at
all. It is very easy to implement for programmers who have learned
the framework of standard computer graphics. It does have the
conceptual appeal of allowing users access to a clearly defined
mathematical category of transformations. However, users often
have difficulty figuring out how to achieve a desired viewpoint with
completely free navigation, especially in three dimensions. Navi-
gating with the six degrees of freedom available in 3D space is not
a skill that most people have acquired; pilots of airplanes and he-
licopters are the exception rather than the rule. To make matters

11.5. Navigate: Changing Viewpoint 257

worse, when interacting with virtual objects drawn with computer
graphics, it is easy to inadvertently move the viewpoint inside ob-
jects that are intended to be solid. The physics of reality prevent
interpenetration between our heads and objects like walls, floors,
or basketballs. With computer graphics, collision detection is a
computationally intensive process that is separate from drawing
and does not come for free. Another problem is ending up with the
camera pointed at nothing at all, so that the entire frame is empty
and it is not obvious where to go in order to see something inter-
esting. This problem is especially common in 3D settings, but it
can still be a problem in 2D settings with unconstrained panning
and zooming. A button to reset the view is of course a good idea,
but it is far from a complete solution.

In contrast, constrained navigation idioms have some kind of
limit on the possible motion of the camera. One of the simplest
approaches in a 2D setting is to limit the zoom range, so that the
camera cannot zoom out much farther than the distance where the
entire drawn scene is visible or zoom in much farther than the size
of the smallest object.

Many approaches allow the user to easily select some item of
interest, to which the system can then automatically calculate a
smooth camera trajectory for an animated transition from the cur-
rent viewpoint to a viewpoint better suited to viewing the selected
item, thus maintaining context. Figure 15.20 shows an exam-
ple where the final viewpoint is zoomed in enough that labels are
clearly visible, zoomed out far enough that the full extent of the
object fits in the frame, and panned so that the object is within the
frame. In this case, a click anywhere within the green box enclos-
ing a set of words is interpreted as a request to frame the entire
complex object in the view, not a request to simply zoom in to that
exact point in space. In 3D, a useful additional constraint is that
final orientation looks straight down at the object along a vector
perpendicular to it, with the up vector of the camera consistent
with the vertical axis of the object.

Constrained navigation is particularly powerful when combined
with linked navigation between multiple views. For example, a tab-
ular or list view could be sorted by many possible attributes, in-
cluding simple alphabetical ordering. These views support search
well, where the name of a unique item is known in advance. Click-
ing on that object in the list view could trigger navigation to ensure
that the object of interest is framed within another, more elaborate,
view designed for browsing local neighborhoods where the items
are laid out with a very different encoding for spatial position.

258 11. Manipulate View

Many vis tools support both types of navigation. For example,
constrained navigation may be designed to provide shortcuts for
common use, with unconstrained navigation as a backup for the
uncommon cases where the user needs completely general con-
trols.

11.6 Navigate: Reducing Attributes

The geometric intuitions that underlie the metaphor of navigation
with a virtual camera also lead to a set of design choices for reduc-
ing the number of attributes: slice, cut, and project. In this section
I often use the term dimensions instead of the synonym attributes
to emphasize this intuition of moving a camera through space. Al-
though these idioms are inspired by ways to manipulate a virtual
camera in a 3D scene, they also generalize to higher-dimensional
spaces. These idioms are very commonly used for spatial field data-
sets, but they can sometimes be usefully applied to abstract data.

11.6.1 Slice

With the slice design choice, a single value is chosen from the
dimension to eliminate, and only the items matching that value for
the dimension are extracted to include in the lower-dimensional
slice. Slicing is a particularly intuitive metaphor when reducing
spatial data from 3D to 2D.

Figure 11.8(a) shows a classic example of inspecting a 3D scan
of a human head by interactively changing the slice location to dif-
ferent heights along the skull. That is, the value chosen is a spe-
cific height in the third dimension, and the information extracted
is the 2D position and color for each point matching that height.
Here the slicing plane is aligned to one of the major axes of the hu-
man body, which are also the original dimensions used to gather
the data. One benefit of axis-aligned slices is that they may corre-
spond to views that are familiar to the viewer: for example, medical
students learn anatomy in terms of cross sections along the stan-
dard coronal, sagittal, and horizontal planes.

It is also possible to slice along a plane at an arbitrary orien-
tation that does not match the original axes, exploiting the same
intuition. Mathematically, the operation is more complex, because
finding the values to extract may require a significant computation
rather than a simple look-up.⋆

⋆ Using the vocabulary
of signal processing, care
must taken to minimize
sampling and interpola-
tion artifacts. These ques-
tions are also discussed in
Section 8.4.

11.6. Navigate: Reducing Attributes 259

(a) (b)

Figure 11.8. The slice choice eliminates a dimension/attribute by extracting only
the items with a chosen value in that dimension. The cut choice eliminates all data
on one side of a spatial cutting plane. (a) Axis-aligned slice. (b) Axis-aligned cut.
From [Rieder et al. 08, Figures 7c and 0].

Slicing is not restricted to a change from 3D to 2D. The same
idea holds in the more general case, where the slicing plane could
be a hyperplane; that is, the higher-dimensional version of a plane.
In the case of reducing to just one dimension, the hyperplane
would simply be a line. Slicing can be used to eliminate multiple
dimensions at once, for example by reducing from six dimensions
to one.

Example: HyperSlice

The HyperSlice system uses the design choice of slicing for attribute re-
duction to display abstract data with many attributes: scalar functions
with many variables [van Wijk and van Liere 93]. The visual encoding
is a set of views showing all possible orthogonal two-dimensional slices
aligned in a matrix. Figure 11.9(a) shows the intuition behind the sys-
tem for a simple 3D example of three planes that intersect at right angles
to each other. The views are coordinated with linked navigation of the
high-dimensional space, where each view is both a display and a control:
dragging with a view changes the slice value based on its pair of dimen-

260 11. Manipulate View

(a) (b)

Figure 11.9. The HyperSlice system uses extracting only the items with a chosen value in that dimension. (a) Three
3D planes that intersect at right angles. (b) Four-dimensional dataset where function value is encoded with lumi-
nance. From [van Wijk and van Liere 93, Figures 1 and 4].

sions. Figure 11.9(b) shows a more complex four-dimensional dataset,
where the function value is coded with luminance.

11.6.2 Cut
The interaction idiom of cut allows the user to position a plane
that divides the viewing volume in two, and everything on the side
of the plane nearest to the camera viewpoint is not shown. This
cutting plane can either be axis aligned or arbitrarily oriented, just
as with the slices.⋆ Cutting is often used to see features in the⋆ In computer graphics,

this plane is often called a
clipping plane.

interior of a 3D volume. Figure 11.8(b) shows an example, again
with medical image data of a human brain. The cutting plane is
set to the same level as the slice in Figure 11.8(a). The cut design
choice shows more information than just the 2D slice alone, since
the surrounding 3D context behind the cutting plane is also visi-
ble. Figure 8.6(c) also shows a cutting plane in use on a human
head dataset, but with the visual encoding idiom of direct volume
rendering.

11.7. Further Reading 261

11.6.3 Project
With the project design choice, all items are shown, but without
the information for specific dimensions chosen to exclude. For
instance, the shadow of an object on a wall or floor is a projection
from 3D to 2D. There are many types of projection; some retain
partial information about the removed dimensions, while others
eliminate that completely.

A very simple form of projection is orthographic projection: for
each item the values for excluded dimensions are simply dropped,
and no information about the eliminated dimensions is retained.
In the case of orthographic projection from 3D to 2D, all informa-
tion about depth is lost.⋆ Projections are often used via multiple ⋆ The term dimensional

filtering, common when
working with abstract data,
is essentially a synonym
for orthographic projec-
tion, more commonly used
when working with spatial
data.

views, where there can be a view for each possible combination of
dimensions. For instance, standard architectural blueprints show
the three possible views for axis-aligned 2D views of a 3D XYZ
scene: a floor plan for the XY dimensions, a side view for YZ, and
a front view for XZ.

A more complex yet more familiar form of projection is the stan-
dard perspective projection, which also projects from 3D to 2D.
This transformation happens automatically in our eyes and is math-
ematically modeled in the perspective transformation used in the
computer graphics virtual camera. While a great deal of informa-
tion about depth is lost, some is retained through the perspective
distortion foreshortening effect, where distant objects are closer to-
gether on the image plane than nearby objects would be.

Many map projections from the surface of the Earth to 2D maps
have been proposed by cartographers, including the well-known
Mercator projection. These projections transform from a curved to
a flat space, and most of the design choices when creating them
concern whether distorting angles or areas is less problematic for
the intended abstract task.1

11.7 Further Reading

Change An early paper argues for adding interaction support to pre-
viously static visual encoding idioms as a good starting point
for thinking about views that change [Dix and Ellis 98].

1Mathematically, cartographic projections are a transformation from a 2D curved
space that is embedded in three dimensions, namely, the surface of the Earth, to a
2D flat space, so they do not cleanly fit the intuition of projection as a way to reduce
dimensionality.

262 11. Manipulate View

Animated Transitions A taxonomy of animated transition types includes
design guidelines for constructing transitions, and an em-
pirical study showing strong evidence that properly designed
transitions can improve graphical perception of
changes [Heer and Robertson 07].

Select The entertainingly named Selection: 524,288 Ways to Say
“This Is Interesting” contains nicely reasoned arguments for
narrowing selection operations across linked views to a small
set of combinations [Wills 96].

Semantic Zooming The Pad++ system was an early exploration into
semanic zooming [Bederson and Hollan 94]; LiveRAC is a
more recent system using that idiom [McLachlan et al. 08].

Constrained Navigation Early work evangelized the idea of con-
strained navigation in 3D [Mackinlay et al. 90]; later work
provides a framework for calculating smooth and efficient 2D
panning and zooming trajectories [van Wijk and Nuij 03].

This page intentionally left blankThis page intentionally left blank

Facet

Partition into Side-by-Side Views

Superimpose Layers

Juxtapose and Coordinate Multiple Side-by-Side Views

Share Data: All/Subset/None

Share Navigation

All Subset

Same

Multiform

Multiform,
Overview/

Detail

None

Redundant

No Linkage

Small Multiples

Overview/
Detail

Linked Highlighting

Figure 12.1. Design choices of how to facet information between multiple views.

Facet into Multiple Views

Chapter 12

12.1 The Big Picture

This chapter covers choices about how to facet data across multiple
views, as shown in Figure 12.1. One option for showing views
is juxtapose them side by side, leading to many choices of how
to coordinate these views with each other. The other option is to
superimpose the views as layers on top of each other. When the
views show different data, a set of choices covers how to partition
data across multiple views.

The main design choices for juxtaposed views cover how to coor-
dinate them: which visual encoding channels are shared between
them, how much of the data is shared between them, and whether
the navigation is synchronized. Other juxtaposition choices are
when to show each view and how to arrange them. The design
choices for partitioning are how many regions to use, how to divide
the data up into regions, the order in which attributes are used
to split, and when to stop. The design choices for how to super-
impose include how elements are partitioned between layers, how
many layers to use, how to distinguish them from each other, and
whether the layers are static or dynamically constructed.

12.2 Why Facet?

The verb facet means to split; this chapter covers the design choices
that pertain to splitting up the display, into either multiple views
or layers. One of the five major approaches to handling visual
complexity involves faceting information: juxtaposing coordinated
views side by side and superimposing layers within a single view.
In both of these cases, the data needs to be partitioned into the
views or layers.

" The other four approach-
es are covered in other
chapters: Chapter 3 covers
deriving new data to include
in a view, Chapter 11 cov-
ers changing a single view
over time, Chapter 13 cov-
ers reducing the amount of
data to show in a view, and
Chapter 14 covers embed-
ding focus and context in-
formation within the same
view.

Multiple views juxtaposed side by side are spread out in space,
an alternative to a changing view where the information presented

265

266 12. Facet into Multiple Views

to the user is spread out over time. Comparing two views that
are simultaneously visible is relatively easy, because we can move
our eyes back and forth between them to compare their states. In
contrast, for a changing view, comparing its current state to its
previous state requires users to consult their working memory, a
scarce internal resource.

" For more on the ideas be-
hind the slogan Eyes Beat
Memory, see Section 6.5.

The multiform design choice for coordinating juxtaposed views
is to use a different encoding in each one to show the same data.
The rationale is that no single visual encoding is optimal for all
possible tasks; a multiform vis tool can thus support more tasks,
or faster switching between tasks, than a tool that only shows a
single view. Cooordinating multiform views with linked highlight-
ing allows users to see whether a spatial neighborhood in one view
also falls into contiguous regions in the other views or whether it
is distributed differently.

The small multiples coordination choice involves partitioning the
data between views. Partitioning is a powerful and general idea,
especially when used hierarchically with a succession of attributes
to slice and dice the dataset up into pieces of possible interest.
The choice of which attributes to partition versus which to directly
encode with, as well as the order of partitioning, has a profound
effect on what aspects of the dataset are visually salient.

The obvious and significant cost to juxtaposed views is the dis-
play area required to show these multiple windows side by side.
When two views are shown side by side, they each get only half
the area that a single view could provide. Display area is a scarce
external resource. The trade-off between the scarcity of display
area and working memory is a major issue in choosing between
juxtaposing additional views and changing an existing view.

In contrast, superimposing layers does not require more screen
space. Visual layering is a way to control visual clutter in complex
visual encodings, leading to a less cluttered view than a single view
without any layers. Superimposing layers and changing the view
over time are not mutually exclusive: these two design choices are
often used together. In particular, the choice to dynamically con-
struct layers necessarily implies an interactive view that changes.
One limitation of superimposing is that creating visually distin-
guishable layers imposes serious constraints on visual encoding
choices. A major difference between layering and juxtaposing is
the strong limits on the number of layers that can be superimposed
on each other before the visual clutter becomes overwhelming: two
is very feasible and three is possible with care, but more would be
difficult. In contrast, the juxtaposing choice can accommodate a

12.3. Juxtapose and Coordinate Views 267

much larger number of views, where several is straightforward and
up to a few dozen is viable with care.

12.3 Juxtapose and Coordinate Views

Using multiple juxtaposed views involves many choices about how
to coordinate between them to create linked views.⋆ There are four ⋆ Linked views, multi-

ple views, coordinated
views, coordinated mul-
tiple views, and coupled
views are all synonyms for
the same fundamental idea.

major design choices for how to establish some sort of linkage be-
tween the views. Do the views share the same visual encoding or
use different encodings? In particular, is highlighting linked be-
tween the views? Do the views show the same data, does one show
a subset of what’s in the other, or do the views show a disjoint
partitioning where each shows a different set? Is navigation syn-
chronized between the views?

12.3.1 Share Encoding: Same/Different
The most common method for linking views together is to have
some form of shared visual encoding where a visual channel is
used in the same way across the multiple views. The design choice
of shared encoding views means that all channels are handled the
same way for an identical visual encoding. The design choice of
multiform views means that some, but not necessarily all, aspects
of the visual encoding differ between the two views.⋆ For exam- ⋆ The generic term mul-

tiple views is often used
as a synonym for multiform
views.

ple, in a multiform system two views might have different spatial
layouts but the same color coding, so there is a shared encoding
through the color channel. Another option is that two views could
be aligned in one spatial direction but not in the other. These
forms of linking don’t necessarily require interactivity and can be
done with completely static views.

Interactivity unleashes the full power of linked views. One of
the most common forms of linking is linked highlighting, where
items that are interactively selected in one view are immediately
highlighted in all other views using in the same highlight color.⋆ ⋆ Linked highlighting is

also called brushing or
cross-filtering.

Linked highlighting is a special case of a shared visual encoding
in the color channel. The central benefit of the linked highlighting
idiom is in seeing how a region that is contiguous in one view is
distributed within another.

The rationale behind multiform encoding across views is that
a single monolithic view has strong limits on the number of at-
tributes that can be shown simultaneously without introducing too
much visual clutter. Although simple abstract tasks can often be

268 12. Facet into Multiple Views

fully supported by a single view of a specific dataset, more complex
ones often cannot. With multiple views as opposed to a single view,
each view does not have to show all of the attributes; they can each
show only a subset of the attributes, avoiding the visual clutter of
trying to superimpose too many attributes in a single view. Even
if two views show exactly the same set of attributes, the visual
channels used to encode can differ. The most important channel
change is what spatial position encodes; this most salient channel
dominates our use of the view and strongly affects what tasks it
best supports. Multiform views can thus exploit the strengths of
multiple visual encodings.

Example: Exploratory Data Visualizer (EDV)

The EDV system features the idiom of linked highlighting between views
[Wills 95]. Figure 12.2 shows a baseball statistics dataset with linked bar
charts, scatterplots, and a histogram [Wills 95]. In Figure 12.2(a), the
viewer has selected players with high salaries in the smoothed histogram
view on the upper right. The distribution of these players is very different
in the other plots. In the Years played view bar chart on the upper left,
there are no rookie players. The Assists-PutOuts scatterplot does not show
much correlation with salary. Comparing the CHits/Years plot showing
batting ability in terms of career home runs with average career hits shows
that the hits per year is more correlated with salary than the home runs

(a) (b)

Figure 12.2. Linked highlighting between views shows how regions that are con-
tiguous in one view are distributed within another. (a) Selecting the high salaries
in the upper right window shows different distributions in the other views. (b) Se-
lecting the bottom group in the Assists-PutOuts window shows that the clump cor-
responds to specific positions played. From [Wills 95, Figures 4 and 5].

12.3. Juxtapose and Coordinate Views 269

per year. The bottom Position window shows a loose relationship between
salary and the player’s position in the field. The Assists-PutOuts window
shows a clustering into two major groups. Figure 12.2(b) shows the result
of selecting the bottom clump. The bottom Position window shows that this
clump corresponds to specific positions played, whereas these players are
fairly evenly distributed in the other windows.

System Exploratory Data Visualizer (EDV)
What: Data Tables.

How: Encode Bar charts, scatterplots, and histograms.

How: Facet Partition: multiform views. Coordinate: linked high-
lighting.

12.3.2 Share Data: All, Subset, None
A second design choice is how much data is shared between the
two views. There are three alternatives: with shared data, both
views could each show all of the data; with overview–detail, one
view could show a subset of what is in the other, or with small
multiples, the views could show different partitions of the dataset
into disjoint pieces.

The shared data choice to show all of the data in each view
is common with multiform systems, where the encoding differs be-
tween the views. It’s not usual to combine shared data with shared
encoding, since then the two views would be identical and thus re-
dundant.

With the overview–detail choice, one of the views shows infor-
mation about the entire dataset to provide an overview of every-
thing. One or more additional views show more detailed informa-
tion about a subset of the data that is selected by the viewer from
the larger set depicted in the broader view.

A popular overview–detail idiom is to combine shared encoding
and shared data with navigation support so that each view shows
a different viewpoint of the same dataset. When two of these views

" For more on changing
the viewpoint with naviga-
tion, see Section 11.5.are shown they often have different sizes, a large one with many

pixels versus a small one with few. For some tasks, it’s best to
have the large window be the main view for exploring the details
and the small window be the zoomed-out overview; for others, the
large view would be devoted to the overview, with a smaller window
for details. While it’s theoretically possible to set both views to
the same zoom level, so that they show identical information, the

270 12. Facet into Multiple Views

normal case is that one view shows only a subset of the other. Also,
zooming is only one form of navigation: even two viewpoints at the
same zoom level can still show different subsets of the data due to
different rotation or translation settings.

There are several standard approaches in choosing how many
views to use in total. A common choice is to have only two views,
one for overview and one for detail. When the dataset has multi-
level structure at discrete scales, multiple detail views may be ap-
propriate to show structure at these different levels. The user can
zoom down in to successively smaller subsets of the data with a
series of selections, and the other views act as a concise visual his-
tory of what region they selected that can be accessed at a glance.
In contrast, with the change design choice, users are more likely
to lose track of their location because they have no scaffolding to
augment their own internal memory.

Example: Bird’s-Eye Maps

Interactive online geographic maps are a widely used idiom that combines
the shared encoding and overview–detail choices for geographic data, with
a large map exploration view augmented by a small “bird’s-eye” view pro-
viding an orienting overview, as shown in Figure 12.3. A small rectangle

Figure 12.3. Overview–detail example with geographic maps, where the views
have the same encoding and dataset; they differ in viewpoint and size. Made with
Google Maps, http://maps.google.com.

12.3. Juxtapose and Coordinate Views 271

within the overview shows the region viewable within the detail view. The
minimum navigational linkage is unidirectional, where position and size of
the rectangle in the overview updates as the user pans and zooms within
the large detail view. With bidirectionally linked views, the rectangle can
also be moved within the small view to update the region shown in the
large one.

Idiom Bird’s-Eye Maps
What: Data Geographic.

How: Encode Use given.

How: Facet Partition into two views with same encoding,
overview–detail.

(How: Reduce) Navigate.

Another common approach is to combine the choices of overview–
detail for data sharing with multiform views, where the detail view
has a different visual encoding than the overview. A detail view that
shows additional information about one or more items selected in
a central main view is sometimes called a detail-on-demand view.
This view might be a popup window near the cursor or a fixed win-
dow in another part of the display.

Example: Multiform Overview–Detail Microarrays

Figure 12.4 shows an example of a multiform overview–detail vis tool de-
signed to support the visual exploration of microarray time-series data by
biologists [Craig and Kennedy 03]. It features coordination between the
scatterplot view in the center and the graph view in the upper left. The
designers carefully analyzed the domain situation to generate an appro-
priate data and task abstraction and concluded that no single view would
suffice.

Microarrays measure gene expression, which is the activity level of a
gene. They are used to compare gene activity across many different sit-
uations; examples include different times, different tissue types such as
brain versus bone, exposure to different drugs, samples from different
individuals, or samples from known groups such as cancerous or non-
cancerous.

The designers identified the five tasks of finding genes that were on
or off across the whole time period, finding genes whose values rose or
fell over a specified time window, finding genes with similar time-series
patterns, relating all these sets to known functional groups of genes, and
exporting the results for use within other tools.

272 12. Facet into Multiple Views

Figure 12.4. Multiform overview–detail vis tool for microarray exploration features a central scatterplot linked with
the graph view in the upper left. From [Craig and Kennedy 03, Figure 3].

In the why analysis framework, the first four tasks are examples of the
consume goal, while the last is produce. All of the consume tasks involve
the discover goal at the high level and the locate goal for the mid-level
search. At the query level, the first three tasks focus on the identify case,
and the last on the compare case. In the what analysis framework, the
targets are distributions and trends for a single attribute and similarity
between multiple attributes.

The data abstraction identified five key parameters: the original quan-
titative attribute of microarray value indexed by the keys of gene and time
and three derived quantitative attributes of value change, percentage of
max value, and fold change (a log-scale change measure frequently used
in microarray data analysis).

The graph view shows time-series data plotted with globally superim-
posed line charts. Each line mark represents a gene, with the horizontal

" For more on superim-
posed line charts, see Sec-
tion 12.5.2. axis showing time and the vertical axis showing value. The user interacts

with this overview to select a time period of interest to show in the scat-
terplot detail view by changing the position or width of the time slider. The
time-series graph view does not support visual queries about value change
or fold change, which are derived values computed within the time window
chosen. In the scatterplot view, the horizontal axis can be set to either of

12.3. Juxtapose and Coordinate Views 273

these derived variables. In the scatterplot, each gene is represented by
a point mark. This view also encodes the functional groups with color
coding and dynamically shows the label for the gene under the cursor.

The list view on the right shows the gene names for all genes within
the active time window, ordered alphabetically. Although a text list might
appear to be a trivial vis when considered as a stand-alone view, these
kinds of simpler views often play useful roles in a multiple-view system.
This particular list view provides a textual overview and also supports
both browsing and lookup. While interaction via hovering over an item is
useful for discovering the identify of a mark in a specific place, it would
be a very frustrating way to get an overview of all labels because the user
would have to click in many places and try to remember all of the previous
labels. Glancing at the list view provides a simple overview of the names
and allows the user to quickly select an item with a known name.

System Multiform Overview–Detail Microarrays
What: Data Multidimensional table: one categorical key attribute

(gene), one ordered key attribute (time), one quan-
titative value attribute (microarray measurement of
gene activity at time).

What: Derived Three quantitative value attributes: (value change,
percentage of max value, fold change).

Why: Tasks Locate, identify, and compare; distribution, trend,
and similarity.
Produce.

How: Encode Line charts, scatterplots, lists.

How: Facet Partition into multiform views. Coordinate with linked
highlighting. Overview+detail filtering of time range.
Superimpose line charts.

The third alternative for data sharing between views is to show
a different partition of the dataset in each. Multiple views with the

" The design choice of how
to partition data between
views is covered in Sec-
tion 12.4.

same encoding and different partitions of the data between them
are often called small multiples. The shared visual encoding means
that the views have a common reference frame so that comparison
of spatial position between them is directly meaningful. Small mul-
tiples are often aligned into a list or matrix to support comparison
with the highest precision. The choice of small-multiple views is in

" For more on aligning re-
gions, see Section 7.5.

some sense the inverse of multiform views, since the encoding is
identical but the data differs.

274 12. Facet into Multiple Views

The weakness of small multiples, as with all juxtaposed view
combinations, is the screen real estate required to show all of these
views simultaneously. The operational limit with current displays
of around one million pixels is a few dozen views with several hun-
dred elements in each view.

The strength of the small-multiple views is in making differ-
ent partitions of the dataset simultaneously visible side by side,
allowing the user to glance quickly between them with minimal in-
teraction cost and memory load. Small multiples are often used
as an alternative to animations, where all frames are visible simul-
taneously rather than shown one by one. Animation imposes a
massive memory load when the amount of change between each
frame is complex and distributed spatially between many points in
the scene.

" The relationship between
animation and memory is
discussed in Section 6.5.

Example: Cerebral

Figure 12.5 shows an example of small-multiple views in the Cerebral sys-
tem [Barsky et al. 08]. The dataset is also from the bioinformatics domain,
a multidimensional table with the two keys of genes and experimental con-
dition and the value attribute of microarray measurements of gene activity
for the condition. The large view on the upper right is a node–link network
diagram where nodes are genes and links are the known interactions be-
tween genes, shown with connection marks. The layout also encodes an
ordered attribute for each node, the location within the cell where the in-
teraction occurs, with vertical spatial position. Containment marks show
the groups of coregulated genes. The small-multiple views to the left of the
large window show a partitioning of the dataset by condition. The views
are aligned to a matrix and are reorderable within it.

In each small-multiple network view the nodes are colored with a di-
verging red–green colormap showing the quantitative attribute of gene ac-
tivity for that view’s condition. This colormap follows bioinformatics do-
main conventions; other colormaps that better serve colorblind users are
also available. In the large network view, the color coding for the nodes is

" The convention of red–
green colormaps in bioinfor-
matics is discussed in Sec-
tion 7.5.2.

a diverging orange–blue colormap based on the derived attribute of differ-
ence in values between the two selected small multiples, whose titlebars
are highlighted in blue.

Cerebral is also multiform; the view at the bottom uses parallel coordi-
nates for the visual encoding, along with a control panel for data cluster-
ing. The navigation between the views is linked, as discussed next.

12.3. Juxtapose and Coordinate Views 275

Figure 12.5. Cerebral uses small-multiple views to show the same base graph of gene interactions colored accord-
ing to microarray measurements made at different times. The coloring in the main view uses the derived attribute of
the difference in values between the two chosen views. From [Barsky et al. 08, Figure 2].

System Cerebral
What: Data Multidimensional table: one categorical key attribute

(gene), one categorical key attribute (condition), one
quantitative value attribute (gene activity at condi-
tion). Network: nodes (genes), links (known in-
teraction between genes), one ordered attribute on
nodes: location within cell of interaction.

What: Derived One quantitative value attribute (difference between
measurements for two partitions).

How: Encode Node–link network using connection marks, vertical
spatial position expressing interaction location, con-
tainment marks for coregulated gene groups, diverg-
ing colormap. Small-multiple network views aligned
in matrix. Parallel coordinates.

How: Facet Partition: small multiple views partitioned on condi-
tion, and multiform views. Coordinate: linked high-
lighting and navigation.

276 12. Facet into Multiple Views

All Subset

Same

Multiform

Multiform,
Overview/

Detail

None

Redundant

No Linkage

Small Multiples

Overview/
Detail

Figure 12.6. Design choices for how to coordinate between views relating to shar-
ing encoding and data.

12.3.3 Share Navigation: Synchronize
Another way to coordinate between views is to share navigation.
With linked navigation, moving the viewpoint in one view is syn-
chronized to movement in the others. For example, linked navi-
gation is common with map views that have a smaller bird’s-eye
overview window in addition to a larger detail view, where interac-
tion in the small window changes the viewpoint in the large one.

" Navigation is covered fur-
ther in Section 11.5.

12.3.4 Combinations
Figure 12.6 summarizes the design choices for coordinating views
in terms of whether the encoding and data are shared or differ-
ent and how these choices interact with each other. The encoding
could be the same or different; the data could be the same, a sub-
set, or a partition. Two of the six possibilities are not useful. When
everything is shared, with both the data and encoding identical,
the two views would be redundant. When nothing is shared, with
different data in each view and no shared channels in the visual
encoding, there is no linkage between the views. Otherwise, the
choices of sharing for encoding and data are independent. For ex-
ample, the overview–detail choice of creating subsets of the data
can be used with either multiform or shared encoding.

Complex systems will use these methods in combination, so in
this book these terms are used to mean that at least one pair of
views differs along that particular axis. For example, multiform
means that at least one pair of views differs, not necessarily that
every single view has a different encoding from every other one.

12.3. Juxtapose and Coordinate Views 277

Example: Improvise

Figure 12.7 shows a vis of census data that uses many views. In addition
to geographic information, the demographic information for each county
includes population, density, genders, median age, percentage change
since 1990, and proportions of major ethnic groups. The system is multi-
form with geographic, scatterplot, parallel coordinate, tabular, and matrix
views. These multiform views all share the same bivariate sequential–
sequential color encoding, documented with a legend in the bottom mid-
dle. A set of small-multiple views appears in the lower left in the form

" Bivariate colormaps are
covered in Section 10.3.3.

of a scatterplot matrix, where each scatterplot shows a different pair of
attributes. All of the views are linked by highlighting: the blue selected
items are close together in some views and spread out in others. A set of
small-multiple reorderable list views result from partitioning the data by

Figure 12.7. The Improvise toolkit [Weaver 04] was used to create this census vis that has many forms of coordi-
nation between views. It has many multiform views, some of which use small multiples, and some of which provide
additional detail information. From http://www.cs.ou.edu/∼weaver/improvise/examples/census.

278 12. Facet into Multiple Views

attribute. The list views allow direct sorting by and selection within an at-
tribute of interest. The map in the upper left view is a small overview, with
linked navigation to the large geographic detail view in the top middle.

System Improvise
What: Data Geographic and multidimensional table (census

data): one key attribute (county), many quantitative
attributes (demographic information).

How: Encode Scatterplot matrix, parallel coordinates, choropleth
map with size-coded city points, bird’s-eye map
overview, scatterplot, reorderable text lists, text ma-
trix. Bivariate sequential–sequential colormap.

How: Facet Partition: small-multiple, multiform, overview–detail
views; linked highlighting.

12.3.5 Juxtapose Views

Two additional design choices that pertain to view juxtaposition do
not directly involve view coordination: when to show each view and
how to arrange them.

The usual choice with juxtaposition is that all of the views are
permanently visible so that users can glance between them, as
suggested by the synonym side-by-side. However, another option
is to have a view that temporarily pops up in response to a user
action.

Sometimes the arrangement of the views is not under the direct
control of the vis designer and is left to the built-in functionality of
the window system running on the user’s computer. If the number
of views is large, then manually arranging them could be a burden-
some load to the user. A more sophisticated choice is to arrange
the views themselves automatically, just like regions and items can
be arranged. For example, views can be aligned and ordered lin-
early in a list, or two-dimensionally in a matrix, to support higher-
precision comparison than unaligned views. This case is common
when data is partitioned between the views, as discussed in the
next section.

12.4. Partition into Views 279

12.4 Partition into Views

The design choice of how to partition a multiattribute dataset into
meaningful groups has major implications for what kind of pat-
terns are visible to the user.⋆ This choice encodes association be-

⋆ Partioning and group-
ing are inverse terms; the
term partitioning is natural
when considering starting
from the top and gradually
refining; the term grouping
is more natural when con-
sidering a bottom-up pro-
cess of gradually consoli-
dating. The term condi-
tioning is a synonym for
partitioning that is used
heavily in the statistics liter-
ature.

tween items using spatial proximity, a highly ranked channel.
The primary design choice within partitioning is how to divide

the data up between the views, given a hierarchy of attributes.⋆

⋆ Synonyms for partition-
ing are hierarchical par-
titioning and dimensional
stacking.

One design choice is how many splits to carry out: splitting
could continue through as many attributes as are available until
the simplest case of one region per item has been reached and it
can be encoded with a single mark, or the partitioning could stop
at a higher level where there is more complex structure to show
within each region. Another design choice within partitioning is
the order in which attributes are used to split things up. A final
design choice is how many views to use; while this decision is often
data driven, it could be determined in advance.

A partitioning attribute is typically a categorical variable that
has only a limited number of unique values; that is, levels. It can
also be a derived attribute, for example created by a transforma-
tion from a quantitative attribute by dividing it up into a limited
number of bins. Partitioning can be carried out with either key
or value attributes. An attribute can be categorical without be-
ing a key; that attribute can still be used to separate into regions
and partition the dataset according to the levels for that attribute.
When dealing with key attributes, it is possible to partition the data
down to the item level, since each item is uniquely indexed by the
combination of all keys. With a value attribute, multiple items can
all share the same value, so the final division might be a group of
items rather than just a single one.

12.4.1 Regions, Glyphs, and Views

Partitioning is an action on a dataset that separates data into
groups. To connect partioning to visual encoding choices, the cru-
cial idea is that a partitioned group can be placed within a region
of space, so partitioning is an action that addresses the separate
choice when arranging data in space. These regions then need to
be ordered, and often aligned, to resolve the other spatial arrange-
ment choices. For example, after space is subdivided into regions,

" Section 7.5 covers sepa-
ration, ordering, and align-
ment.they can be aligned and ordered within a 1D list, or 2D matrix. Re-

cursive subdivision allows these regions to nest inside each other;

280 12. Facet into Multiple Views

these nested regions may be arranged using the same choices as
their enclosing regions or different choices.

When a dataset has only one key attribute, then it is straight-
forward to use that key to separate into one region per item. When
a dataset has multiple keys, there are several possibilities for sep-
aration. Given two keys, X and Y, you could first separate by X and
then by Y, or you could first separate by Y and then by X. A third
option is that you might separate into regions by only one of the
keys and then draw something more complex within the region.
The complexity of what is encoded in a region falls along a contin-
uum. It could be just a single mark, a single geometric primitive. It
could be a more complex glyph: an object with internal structure
that arises from multiple marks. It could be a full view, showing a
complete visual encoding of marks and attributes.

There is no strict dividing line between a region, a view, and
a glyph.⋆ A view is a contiguous region in which visually encoded⋆ The word glyph is used

very ambiguously in the vis
literature. My definitions
unify many ideas within a
common framework but are
not standard. In particu-
lar, my distinction between
a mark and a glyph made of
multiple marks is not univer-
sal.

data is shown on the display.⋆ Sometimes a view is a full-blown

⋆ Other synonyms for view
include display, window,
panel, and pane.

window controlled by the computer’s operating system, sometimes
it is a subcomponent such as a panel or a pane, and sometimes it
simply means a region of the display that is visually distinguish-
able from other regions through some kind of visible boundary. A
spatial region showing data visually encoded by a specific idiom
might be called either a glyph or a view depending on its screen
size, the amount of additional information beyond the visual en-
coding alone that is shown, and whether it is nested within an-
other region. Large, stand-alone, highly detailed regions are likely
to be called views, and small, nested, schematic regions are likely
to be called glyphs. For example, a single bar chart that is 800 pix-
els wide and 400 pixels high, with axes that have labels and tick
marks, confidence intervals shown for each bar, and both a legend
and a title would usually be called a view. If there is a set of bar
charts that are each 50 by 25 pixels, each with a few schematic
bars and two thin unlabeled lines to depict the axes, where each
appears within a geographic region on a map, each chart might be
called a glyph.

The term glyph has been used for structures at a range of sizes.
Glyphs like the schematic bar chart example just mentioned would
fall into the category of macroglyphs. Another example is a glyph
with a complex 3D shape that represents several aspects of local
fluid flow all simultaneously. Designing these glyphs is a micro-
cosm of vis design more generally!

In the middle of the size spectrum are simpler structures such
as a single multipart bar in a stacked bar chart. At the extreme end

12.4. Partition into Views 281

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0
CA TK NY FL IL PA

65 Years and Over
45 to 64 Years
25 to 44 Years
18 to 24 Years
14 to 17 Years
5 to 13 Years
Under 5 Years

(a)

CA TK NY FL IL PA

0

5

11

0

5

11

0

5

11

0

5

11

0

5

11

0

5

11

0

5

11

(b)

Figure 12.8. Partitioning and bar charts. (a) Single bar chart with grouped bars:
separated by state key into regions, using seven-mark glyphs within each re-
gion. (b) Four aligned small-multiple bar chart views: separated by group key
into vertically aligned list of regions, with a full bar chart in each region. From
http://bl.ocks.org/mbostock/3887051, after http://bl.ocks.org/mbostock/4679202.

of the spectrum, microglyphs can be so small that their structure
is not intended to be directly distinguishable: for example, five
very short connected line segments, where the angle between each
pair of segments encodes a quantitative attribute, and the entire
glyph fits within an 15 by 4 pixel region. Microglyphs are typically
used as a dense 2D array that forms a sea of visual texture, where
the hope is that noticeable boundaries will emerge where attribute
values change.

12.4.2 List Alignments
A concrete and simple example of how different partitioning deci-
sions enable different tasks comes from comparing grouped
bar charts to small-multiple aligned bar charts, as shown in Fig-
ure 12.8.

In a grouped bar chart, a multibar glyph is drawn within each
region where a single mark would be drawn in a standard bar
chart. In Figure 12.8(a), the regions are the states, and the bars
within each glyph show demographic category. In contrast, the
small-multiple design choice simply shows several standard bar
charts, one in each view. In Figure 12.8(b), each view shows a
demographic category, with the states spread along each standard

282 12. Facet into Multiple Views

bar chart axis. The grouped bar chart facilitates comparison be-
tween the attributes, whereas the small multiple bar charts facili-
tate comparison within a single attribute.

These two encodings can be interpreted in a unified way: either
both as glyphs, or both in terms of partitions. From a glyph point
of view, the grouped bars idiom uses a smaller multibar glyph, and
the small-multiple bars idiom uses a larger bar-chart glyph. From
a partitioning point of view, both idioms use two levels of partition-
ing: at the high level by a first key, and then at a lower level by
a second key, and finally a single mark is drawn within each sub-
region. The difference is that with grouped bars the second-level
regions are interleaved within the first-level regions, whereas with
small multiple bars the second-level regions are contiguous within
a single first-level region.

12.4.3 Matrix Alignments

Example: Trellis

The Trellis [Becker et al. 96] system is a more complex example. This
system features partitioning a multiattribute dataset into multiple views
and ordering them within a 2D matrix alignment as the main avenue for
exploration. Figure 12.9 shows a dataset of barley yields shown with dot
charts. This dataset is a multidimensional table with three categorical

" Dot charts are discussed
in Section 7.5.1.

attributes that act as keys. The site attribute has six unique levels, the
locations where the barley was grown. The variety attribute for the type
of barley grown has ten levels. The year attribute has only two levels, and
although it technically is a number it is treated as categorical rather than
ordered. The dataset also has a fourth quantitative attribute, the yield.

In this figure, the partitioning is by year for the matrix columns and
by site for the rows. Within the individual dot chart views the vertical
axis is separated by variety, with yield as the quantitative value expressed
with horizontal spatial position. The ordering idiom used is main-effects
ordering, where the derived attribute of the median value is computed
for each group created by the partitioning and used to order them. In
Trellis, main-effects ordering can be done at every partitioning scale. In
Figure 12.9(a) the matrix rows are ordered by the medians for the site,
and the rows within each dot chart are ordered by the medians for the
varieties.

The value of main-effects ordering is that outliers countervailing to the
general trends are visible. The Morris plots in the third row do not match
up with the others, suggesting that perhaps the years had been switched.
Figure 12.9(b) shows a trellis where the vertical ordering between and
within the plots is alphabetical. This display does not provide any useful

12.4. Partition into Views 283

(a) (b)

Figure 12.9. Trellis facets the data into a matrix of dot chart views, allowing the user control of partitioning and
orderering. (a) With main-effects ordering, the plots are ordered by median values within the plots for the sites, and
the shared vertical axis within each plot is ordered by median values within the varieties. The Morris site in the third
row is a visible outlier that does not fit the general trends. (b) With a simple alphabetical ordering of plots and axes,
no trends are visible, so no outliers can be detected. From [Becker et al. 96, Figures 1 and 3].

hints of outliers versus the trends, since no particular general trend is
visible at all. Main-effects ordering is useful because it is a data-driven
way to spatially order information so that both general trends and outliers
can be spotted.

Figure 12.10 shows another plot with a different structure to further
investigate the anomaly. The plots are still partitioned vertically by site,
but no further. Both years are thus included within the same view and
distinguished from each other by color. The switch in color patterns in the
third row shows convincing evidence for the theory that the Morris data is
incorrect.

284 12. Facet into Multiple Views

Figure 12.10. A second Trellis plot combines the years into a single plot with
year encoded by color, showing strong evidence of an anomaly in the data.
From [Becker et al. 96, Figure 2].

System Trellis
What: Data Multidimensional table: three categorical key at-

tributes, one quantitative value attribute.
What: Derived Medians for each partition.

How: Encode Dot charts aligned in 2D matrix.

How: Facet Partitioned by any combination of keys into regions.

12.4. Partition into Views 285

12.4.4 Recursive Subdivision

Partitioning can be used in an exploratory way, where the user
can reconfigure the display to see different choices of partioning
and encoding variables. The Hierarchical Visual Expression (HiVE)
system supports this kind of exploration, shown in the examples
that follow on a dataset of over one million property transactions
in the London area. The categorical attribute of residence type has
four levels: flats Flat, attached terrace houses Ter, semidetached
houses Semi, and fully detached houses Det. The price attribute is
quantitative. The time of sale attribute is provided as a year and
a month, for an ordered attribute with hierarchical internal struc-
ture. The neighborhood attribute, with 33 levels, is an interesting
case that can be considered either as categorical or as spatial.

Figure 12.11(a) shows a view where the top-level partition is a
split into four regions based on the type attribute, arranged in a
matrix. The next split uses the neighborhood attribute, with the
same matrix alignment choice. The final split is by time, again in a
matrix ordered with year from left to right and month from top to
bottom. At the base level, each square is color coded by the derived
attribute of price variation within the group.

This encoding emphasizes that the patterns within the top-level
squares, which show the four different house types, are very dif-
ferent. In contrast, the coloring within each second-level square
representing a neighborhood is more consistent; that is, houses
within the same neighborhood tend to have similar prices.

One way to consider this arrangement is as a recursive subdi-
vision using matrix alignment. Another way to interpret it is that
containment is used to indicate the order of partitioning, where
each of the higher-level regions contains everything at the next
level within it. A third way is as four sets of 33 small multiples
each, where each small multiple view shows a heatmap for the
neighborhood. The consistent ordering and alignment within the
matrices allows easy comparison of the same time cell across the
different neighborhood heatmaps.

Figure 12.11(b) shows another configuration of the same data-
set with the same basic spatial arrangement but a different order
of partitioning. It is partitioned first by neighborhood and then by
residence type, with the bottom levels by year and month as in the
previous example. The color coding is by a slightly different derived
attribute, the average price within the group. In this encoding it
is easy to spot expensive neighborhoods, which are the views near
the center. It is also easy to see that detached houses, in the lower
right corner of each view, are more expensive than the other types.

286 12. Facet into Multiple Views

(a)

(b)

Figure 12.11. The HiVE system supports exploration through different partitioning choices. (a) Recursive matrix
alignment where the first split is by the house type attribute, and the second by neighborhood. The lowest levels
show time with years as rows and months as columns. (b) Switching the order of the first and second splits shows
radically different patterns. From [Slingsby et al. 09, Figures 7b and 2c].

12.4. Partition into Views 287

(a)

(b)

Figure 12.12. HiVE with different arrangements. (a) Sizing regions according to sale counts yields a treemap.
(b) Arranging the second-level regions as choropleth maps. From [Slingsby et al. 09, Figures 7a and 7c].

288 12. Facet into Multiple Views

Figure 12.12(a) shows a third configuration with the same or-
der of partitioning as Figure 12.11(a) but an important difference
in the spatial arrangement: the regions created by the recursive
subdivision are sized according to the number of sales, yielding
variably sized rectangles rather than equally sized squares. This
encoding can be interpreted as a treemap, where the tree struc-
ture being shown is implicitly derived by the order of partitioning
decisions rather than being explicitly provided.

" Treemaps are discussed
in detail in Section 9.5.

Figure 12.12(b) shows a fourth configuration with a more dra-
matic change of arrangement: the top level still has rectangu-
lar regions, but the next level shows the information geographi-
cally using choropleth maps. The structural similarities between

" Choropleth maps are
covered in Section 8.3.1.

heatmaps, treemaps, and choropleth maps are particularly obvi-
ous from this progression. All three have color-coded area marks,
where the shape results from visual encoding choices for the first
two cases and using given spatial geometry in the latter case.

The rough correspondence between the ordering in the rectan-
gular layouts and the geographic view is no coincidence: it arises
from using a variant of the treemap idiom that is spatially aware
[Wood and Dykes 08], for a hybrid layout that combines aspects of
using given spatial data and the design choices for arranging table
data.

12.5 Superimpose Layers

The superimpose family of design choices pertains to combining
multiple layers together by stacking them directly on top of each
other in a single composite view. Multiple simple drawings are
combined on top of each other into a single shared frame. All of
the drawings have the same horizontal and vertical extent and are
blended together as if the single drawings are completely transpar-
ent where no marks exist.⋆⋆ In graphics terminology,

superimpose is an image-
space compositing oper-
ation, where the drawings
have an identical coordinate
system.

A visual layer is simply a set of objects spread out over a region,
where the set of objects in each layer is a visually distinguishable
group that can be told apart from objects in other layers at a per-
ceptual level. The extent of the region is typically the entire view, so
layering multiple views on top of each other is a direct alternative
to showing them as separate views juxtaposed side by side.

The design choices for how to superimpose views include: How
many layers are used? How are the layers visually distinguished
from each other? Is there a small static set of layers that do not
change, or are the layers constructed dynamically in response to
user selection?

12.5. Superimpose Layers 289

A final design choice is how to partition items into layers. For
static layers, it is common to approach this question in a simi-
lar spirit to partitioning items into views, with heavyweight divi-
sions according to attribute types and semantics. For dynamically
constructed layers, the division is often a very lightweight choice
driven by the user’s changing selection, rather than being directly
tied to the structure of dataset attributes.

12.5.1 Visually Distinguishable Layers

One good way to make distinguishable layers is to ensure that each
layer uses a different and nonoverlapping range of the visual chan-
nels active in the encoding. A common choice is to create two visual
layers, a foreground versus a background. With careful design, a
few layers can be created. The main limitation of layering is that
the number of layers that can be visually distinguished is limited to
very few if the layers contain a substantial number of area marks:
two layers is definitely achievable, and three layers is possible with
careful design. Layering many views is only feasible if each layer
contains very little, such as a single line.

The term layer usually implies multiple objects spread through
the region spatially intermixed with objects that are not part of
that visual layer. However, a single highlighted object could be
considered as constituting a very simple visual layer.

12.5.2 Static Layers

The design choice of static layers is that all of the layers are dis-
played simultaneously; the user can choose which to focus on with
the selective direction of visual attention. Mapmakers usually de-
sign maps in exactly this way.

Example: Cartographic Layering

Figure 12.13 shows an example that lets the viewer easily shift attention
between layers. In Figure 12.13(a), area marks form a background layer,
with three different unsaturated colors distinguishing water, parks, and
other land. Line marks form a foreground layer for the road network, with
main roads encoded by wide lines in a fully saturated red color and small
roads with thinner black lines. This layering works well because of the
luminance contrast between the elements on different layers, as seen in
Figure 12.13(b) [Stone 10].

" Checking luminance con-
trast explicitly is an example
of the slogan Get It Right in
Black and White discussed
in Section 6.9.

290 12. Facet into Multiple Views

POINT REYES
NATIONAL
SEASHORE

PACIFIC OCEAN

SAN PABLO

BAY

GOLDEN G
ATE

San Francisco

San Rafael

Petaluma

Tomales

Novato

Olema

Point
Reyes
Station

Oakland

Sir Fra n c is Drake Boulevard

Novato Blvd

Point Rey es
-P

et
alu

m
a

R
d

80

580

101
37

121

1

1

0

0 10 Miles

10 Kilometers

(a) (b)

Figure 12.13. Static visual layering in maps. (a) The map layers are created by
differences in the hue, saturation, luminance, and size channels on both area and
line marks. (b) The grayscale view shows that each layer uses a different range in
the luminance channel, providing luminance contrast. From [Stone 10].

Idiom Cartographic Layering
What: Data Geographic

How: Encode Area marks for regions (water, parks, other land),
line marks for roads, categorical colormap.

How: Facet Superimpose: static layers distinguished with color
saturation, color luminance, and size channels.

Example: Superimposed Line Charts

Figure 12.14 shows a common use of the superimpose design choice,
where several lines representing different data items are superimposed
to create combined charts. The alignment of the simple constituent draw-
ings is straightforward: they are all superimposed directly on top of each
other so that they share the same frame. This simple superimposition
works well because the only mark is a thin line that is mostly disjoint with
the other marks. Figure 12.14(a) shows that the amount of occlusion is
very small with only three lines. This idiom is still usable with even nearly
one dozen items superimposed, as shown in Figure 12.14(b). However,
Figure 12.14(c) shows that this approach does not scale to many dozens
or hundreds of items.

12.5. Superimpose Layers 291

100

80

60

40

20

0
05:00 05:30 06:00 06:30 07:00 07:30 08:00

(a)

05:00 05:30 06:00 06:30 07:00 07:30 08:00

100

80

60

40

20

0

(b)

05:00 05:30 06:00 06:30 07:00 07:30 08:00

100

80

60

40

20

0

(c)

Figure 12.14. Multiple line charts can be superimposed within the same global frame. (a) A small number of items
is easily readable. (b) Up to a few dozen lines can still be understood. (c) This technique does not scale to hundreds
of items.

Idiom Superimposed Line Charts
What: Data Multidimensional table: one ordered key attribute

(time), one categorical key attribute (machine), one
quantitative value attribute (CPU utilization).

How: Encode Line charts, colored by machine attribute.

How: Facet Superimpose: static layers, distinguished with color.

Scale Ordered key attribute: hundreds. Categorical key at-
tribute: one dozen.

292 12. Facet into Multiple Views

(a)

(b)

Figure 12.15. Empirical study comparing superimposed line charts to juxtaposed
filled-area line charts. (a) Superimposed line charts performed best for tasks car-
ried out within a local visual span. (b) Juxtaposed filled area charts were best
for global tasks, especially as the number of time series increased. From [Javed
et al. 10, Figures 1 and 2].

Figure 12.15 shows two interfaces from an empirical study: one
where line charts are superimposed as layers, and another where
juxtaposed small multiples show filled-area charts. The study ex-
plicitly considers the trade-offs between less vertical space avail-
able for the small multiples and less visual clutter by controlling
the screen area to be commensurate: the complete set of small
multiples fit within the same area as the single superimposed view.
The studied tasks were the local maximum task of finding the time
series with the highest value at a specific point in time, the global
slope task of finding the time series with the highest increase dur-
ing the entire time period, and the global discrimination task to
check whether values were higher at different time points across
the series. The number of time series displayed was either 2, 4, or
8 simultaneously. They proposed the guideline that superimpos-
ing layers, as in Figure 12.15(a), is the best choice for comparison
within a local visual span, while juxtaposing multiple views, as in
Figure 12.15(b), is a better choice for dispersed tasks that require
large visual spans, especially as the number of series increases.

Example: Hierarchical Edge Bundles

A more complex example of static superimposition is the hierarchical edge
bundles idiom [Holten 06]. It operates on a compound network, a combi-
nation of a base network and a cluster hierarchy that groups its nodes.

" Compound networks are
defined and discussed in
Section 9.5.

12.5. Superimpose Layers 293

Figure 12.16. The hierarchical edge bundles idiom shows a compound network
in three layers: the tree structure in back with containment circle marks, the red–
green graph edges with connection marks in a middle layer, and the graph nodes
in a front layer. From [Holten 06, Figure 13].

The software engineering example in Figure 12.16 shows the call graph
network, namely, which functions call what other functions in a software
system, in conjunction with the hierarchical structure of the source code
in which these function calls are defined.

The idiom creates two easily distinguishable visual layers through the
use of color: the source code hierarchy layer is gray, as opposed to the
semitransparent red–green layer with the call graph network edges. The
gray hierarchical structure is shown with circular containment marks, in
contrast to the colored connection link marks for the network edges. The
idiom’s name comes from bundling the network edges together to reduce
occlusion with the underlying tree structure, just like physical cables can
be bundled together with cable ties to keep them tidy. Without bundling,
most of the background layer structure would be very difficult to see. The
use of layering is also an important aspect of the idiom; if all of the network
edges were also gray and opaque, the resulting image would be much

294 12. Facet into Multiple Views

harder to interpret. The idiom does not rely on a specific spatial layout for
the tree; it can be applied to many different tree layouts.

Idiom Hierarchical Edge Bundles
What: Data Compound graph: network, hierarchy whose leaves

are nodes in network.
How: Encode Back layer shows hierarchy with containment marks

colored gray, middle layer shows network links col-
ored red–green, front layer shows nodes colored
gray.

How: Facet Superimpose static layers, distinguished with color.

Layering is often carried out with modern graphics hardware to
manage rendering with planes oriented in the screen plane that are
blended together in the correct order from back to front, as if they
were at slightly different 3D depths. This approach is one of the
many ways to exploit modern graphics hardware to create complex
drawings that have the spirit of 2D drawings, rather than true 3D
scenes with full perspective.

12.5.3 Dynamic Layers
With dynamic layers, a layer with different salience than the rest of
the view is constructed interactively, typically in response to user
selection. The number of possible layers can be huge, since they
are constructed on the fly rather than chosen from a very small set
of possibilities that must be simultaneously visually distinguish-
able.

The Cerebral system, shown also in Figure 12.5, uses the de-
sign choice of dynamic layering. Figure 12.17 shows the dynamic
creation of a foreground layer that updates constantly as the user
moves the cursor. When the cursor is directly over a node, the
foreground layer shows its one-hop neighborhood: all of the nodes
in the network that are a single topological hop away from it, plus
the links to them from the target node. The one-hop neighbor-
hood is visually emphasized with a distinctive fully saturated red
to create a foreground layer that is visually distinct from the back-
ground layer, which has only low-saturation colors. The marks in
the foreground layer also have larger linewidth.

12.6. Further Reading 295

Figure 12.17. Cerebral dynamically creates a foreground visual layer of all nodes
one topological hop away in the network from the node underneath the cursor.
From [Barsky et al. 07, Figure 1].

12.6 Further Reading

The Big Picture An extensive survey discusses many idioms that use
the design choices of partitioning into multiple views, super-
imposing layers, changing the viewpoint through navigation,
and embedding focus into context, and includes an assess-
ment of the empirical evidence on their strengths and weak-
nesses [Cockburn et al. 08]. A monograph also presents an
extensive discussion of the trade-offs between these design
choices and guidelines for when and how to use them [Lam
and Munzner 10]. A more specific paper quantifies costs and
benefits of multiple views versus navigation within a single
view for visual comparisons at multiple scales [Plumlee and
Ware 06].

296 12. Facet into Multiple Views

A thoughtful discussion of the design space of “composite vis”
proposes the categories of juxtapose views side by side, su-
perimpose views on top of each other, overload views by em-
bedding, nest one view inside another, and integrate views
together with explicit link marks between them [Javed and
Elmqvist 12]. Another great discussion of approaches to com-
parison identifies juxtapose, superimpose and encode with
derived data [Gleicher et al. 11].

Coordinating Juxtaposed Views A concise set of guidelines on design-
ing multiple-view systems appears in an early paper [Baldon-
ado et al. 00], and many multiple-view idioms are discussed
in a later surveys [Roberts 07]. The Improvise toolkit supports
many forms of linking between views [Weaver 04], and follow-
on work has explored in depth the implications of designing
coordinated multiple view systems [Weaver 10].

Partitioning The HiVE system supports flexible subdivision of at-
tribute hierarchies with the combination of interactive con-
trols and a command language, allowing systematic explo-
ration of the design space of partitioning [Slingsby et al. 09],
with spatially ordered treemaps as one of the layout options
[Wood and Dykes 08].

Glyphs A recent state of the art report on glyphs is an excellent place
to start with further reading [Borgo et al. 13]; another good
overview of glyph design in general appears in a somewhat
earlier handbook chapter [Ward 08]. The complex and sub-
tle issues in the design of both macroglyphs and microglyphs
are discussed extensively Chapters 5 and 6 of Ware’s vis text-
book [Ware 13]. Glyph placement in particular is covered a
journal article [Ward 02]. The space of possible glyph designs
is discussed from a quite different point of view in a design
study focused on biological experiment workflows [Maguire
et al. 12]. Empirical experiments on visual channel use in
glyph design are discussed in a paper on color enhanced star
plot glyphs [Klippel et al. 09].

Linked Highlighting Linked highlighting was proposed at Bell Labs,
where it was called brushing [Becker and Cleveland 87]; a
chapter published 20 years later contains an in-depth dis-
cussion following up these ideas [Wills 08].

Superimposing Layers A concise and very readable blog post dis-
cusses layer design and luminance constrast [Stone 10]. An-

12.6. Further Reading 297

other very readable article discusses the benefits of super-
imposed dot charts compared to grouped bar charts [Rob-
bins 06].

Reduce

Filter

Aggregate

Embed

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

Figure 13.1. Design choices for reducing (or increasing) the amount of data items and attributes to show.

Reduce Items and Attributes

Chapter 13

13.1 The Big Picture

Figure 13.1 shows the set of design choices for reducing—or in-
creasing—what is shown at once within a view. Filtering sim-
ply eliminates elements, whereas aggregation combines many to-
gether. Either choice can be applied to both items or attributes.

13.2 Why Reduce?

Reduction is one of five major strategies for managing complexity
in visualizations; as pointed out before, these five choices are not
mutually exclusive, and various combinations of them are com-
mon.

" Deriving new data is cov-
ered in Chapter 3, chang-
ing a view over time is cov-
ered in Chapter 11, faceting
data into multiple views is
covered in Chapter 12, and
embedding focus and con-
textual information together
within one view is covered
in Chapter 14.

Typically, static data reduction idioms only reduce what is
shown, as the name suggests. However, in the dynamic case, the
outcome of changing a parameter or a choice may be an increase in
the number of visible elements. Thus, many of the idioms covered
in this chapter are bidirectional: they may serve to either reduce
or increase the number of visible elements. Nevertheless, they are
all named after the reduction action for brevity.

Reducing the amount of data shown in a view is an obvious way
to reduce its visual complexity. Of course, the devil is in the de-
tails, where the challenge is to minimize the chances that informa-
tion important to the task is hidden from the user. Reduction can
be applied to both items and attributes; the word element will be
used to refer to either items or attributes when design choices that
apply to both are discussed. Filtering simply eliminates elements,
whereas aggregation creates a single new element that stands in for
multiple others that it replaces. It’s useful to consider the trade-
offs between these two alternatives explicitly when making design
choices: filtering is very straightforward for users to understand,
and typically also to compute. However, people tend to have an

299

300 13. Reduce Items and Attributes

“out of sight, out of mind” mentality about missing information:
they tend to forget to take into account elements that have been
filtered out, even when their absence is the result of quite recent
actions. Aggregation can be somewhat safer from a cognitive point
of view because the stand-in element is designed to convey infor-
mation about the entire set of elements that it replaces. However,
by definition, it cannot convey all omitted information; the chal-
lenge with aggregation is how and what to summarize in a way
that matches well with the dataset and task.

13.3 Filter

The design choice of filtering is a straightforward way to reduce the
number of elements shown: some elements are simply eliminated.
Filtering can be applied to both items and attributes. A straight-
forward approach to filtering is to allow the user to select one or
more ranges of interest in one or more of the elements. The range
might mean what to show or what to leave out.

The idea of filtering is very obvious; the challenge comes in de-
signing a vis system where filtering can be used to effectively ex-
plore a dataset. Consider the simple case of filtering the set of
items according to their values for a single quantitative attribute.
The goal is to select a range within it in terms of minimum and
maximum numeric values and eliminate the items whose values
for that attribute fall outside of the range. From the programmer’s
point of view, a very simple way to support this functionality would
be to simply have the user enter two numbers, a minimum and
maximum value. From the user’s point of view, this approach is
very difficult to use: how on earth do they know what numbers
to type? After they type, how do they know whether that choice is
correct? When your goal is to support exploration of potentially un-
known datasets, you cannot assume that the users already know
these kinds of answers.

In an interactive vis context, filtering is often accomplished
through dynamic queries, where there is a tightly coupled loop be-
tween visual encoding and interaction, so that the user can imme-
diately see the results of the intervention. In this design choice,
a display showing a visual encoding of the dataset is used in con-
junction with controls that support direct interaction, so that the
display updates immediately when the user changes a setting. Of-
ten these controls are standard graphical user interface widgets
such as sliders, buttons, comboboxes, and text fields. Many ex-

13.3. Filter 301

tensions of off-the-shelf widgets have also been proposed to better
support the needs of interactive vis.

13.3.1 Item Filtering
In item filtering, the goal is to eliminate items based on their values
with respect to specific attributes. Fewer items are shown, but the
number of attributes shown does not change.

Example: FilmFinder

Figure 13.2 shows the FilmFinder system [Ahlberg and Shneiderman 94]
for exploring a movie database. The dataset is a table with nine value at-
tributes: genre, year made, title, actors, actresses, directors, rating, popu-
larity, and length. The visual encoding features an interactive scatterplot
where the items are movies color coded by genre, with scatterplot axes
of year made versus movie popularity; Figure 13.2(a) shows the full data-
set. The interaction design features filtering, with immediate update of
the visual display to filter out or add back items as sliders are moved and
buttons are pressed. The visual encoding adapts to the number of items
to display; the marks representing movies are automatically enlarged and
labeled when enough of the dataset has been filtered away that there is
enough room to do so, as in Figure 13.2(b). The system uses multiform
overview–detail views, where clicking on any mark brings up a popup de-
tail view with more information about that movie, as in Figure 13.2(c).

FilmFinder is a specific example of the general dynamic queries ap-
proach, where browsing using tightly coupled visual encoding and inter-
action is an alternative to searching by running queries, as for example
with a database. All of the items in a database are shown at the start
of a session to provide an overview, and direct manipulation of interface
widgets replaces reformulating new queries. This approach is well suited
to browsing, as opposed to a search where the user must formulate an
explicit query that might return far too many items, or none at all.

Figure 13.2 shows the use of two augmented slider types, a dual slider
for movie length that allows the user to select both a minimum and maxi-
mum value, and several alpha sliders that are tuned for selection with text
strings rather than numbers.

System FilmFinder
What: Data Table: nine value attributes.

How: Encode Scatterplot; detail view with text/images.

How: Facet Multiform, overview–detail.

How: Reduce Item filtering.

302 13. Reduce Items and Attributes

(a)

(b)

(c)

Figure 13.2. FilmFinder features tightly coupled interactive filtering, where the re-
sult of moving sliders and pressing buttons is immediately reflected in the visual
encoding. (a) Exploration begins with an overview of all movies in the dataset.
(b) Moving the actor slider to select Sean Connery filters out most of the other
movies, leaving enough room to draw labels. (c) Clicking on the mark represent-
ing a movie brings up a detail view. From [Ahlberg and Shneiderman 94, Color
Plates 1, 2, and 3].

13.3. Filter 303

Figure 13.3. The scented widget idiom adds visual encoding information directly to
standard graphical widgets to make filtering possible with high information density
displays. From [Willett et al. 07, Figure 2].

Standard widgets for filtering controls can be augmented by
concisely visually encoding information about the dataset, but in
the part of the screen normally thought of as the control panel
rather than a separate display area. The idea is to do so while
using no or minimal additional screen real estate, in order to cre-
ate displays that have high information density. These augmented
widgets are called scented widgets [Willett et al. 07], alluding to the
idea of information scent: cues that help a searcher decide whether
there is value in drilling down further into a particular information
source, versus looking elsewhere [Pirolli 07]. Figure 13.3 shows
several examples. One way to add information is by inserting a
concise statistical graphic, such as a bar or line chart. Another
choice is by inserting icons or text labels. A third choice is to
treat some part of the existing widget as a mark and encode more
information into that region using visual channels such as hue,
saturation, and opacity.

The Improvise system shown in Figure 12.7 is another example
of the use of filtering. The checkbox list view in the lower middle
part of the screen is a simple filter controlling whether various
geographic features are shown. The multiform microarray explorer
in Figure 12.4 also supports several kinds of filtering, with simple
range sliders and a more complex view that allows range selection
on top of line charts of time-series data. The selected range in the
line chart view acts as a filter for the scatterplot view.

13.3.2 Attribute Filtering

Attributes can also be filtered. With attribute filtering, the goal is to
eliminate attributes rather than items; that is, to show the same
number of items, but fewer attributes for each item.

304 13. Reduce Items and Attributes

Item filtering and attribute filtering can be combined, with the
result of showing both fewer items and fewer attributes.

Example: DOSFA

Figure 13.4 shows an example of the Dimensional Ordering, Spacing, and
Filtering Approach (DOSFA) idiom [Yang et al. 03a]. As the name sug-
gests, the idiom features attribute filtering.⋆ Figure 13.4 shows DOSFA⋆ Many idioms for at-

tribute filtering and aggre-
gation use the alternative
term dimension rather than
attribute in their names.

on a dataset of 215 attributes representing word counts and 298 points
representing documents in a collection of medical abstracts. DOSFA can
be used with many visual encoding approaches; this figure shows it in
use with star plots. In Figure 13.4(a) the plot axes are so densely packed

" For more on star plots,
see Section 7.6.3.

that little structure can be seen. Figure 13.4(b) shows the plots after the
dimensions are ordered by similarity and filtered by both similarity and
importance thresholds. The filtered display does show clear visual pat-
terns.

(a) (b)

Figure 13.4. The DOSFA idiom shown on star glyphs with a medical records data-
set of 215 dimensions and 298 points. (a) The full dataset is so dense that patterns
cannot be seen. (b) After ordering on similarity and filtering on both similarity and
importance, the star glyphs show structure. From [Yang et al. 03a, Figures 3a
and 3d].

System DOSFA
What: Data Table: many value attributes.

How: Encode Star plots.

How: Facet Small multiples with matrix alignment.

How: Reduce Attribute filtering.

13.4. Aggregate 305

Attribute filtering is often used in conjunction with attribute
ordering.⋆ If attributes can be ordered according to a derived at- ⋆ A synonym for attribute

ordering is dimensional or-
dering.

tribute that measures the similarity between them, then all of the
high-scoring ones or low-scoring ones can be easily filtered out in-
teractively. A similarity measure for an attribute creates a quantita-
tive or ordered value for each attribute based on all of the data item
values for that attribute.⋆ One approach is to calculate the variance

⋆ A synonym for similarity
measure is similarity met-
ric. Although I am com-
bining the ideas of measure
and metric here for the pur-
poses of this discussion, in
many specialized contexts
such as mathematics and
business analysis they are
carefully distinguished with
different definitions.

of an attribute: to what extent the values within that attribute are
similar to or different from each other. There are many ways to
calculate a similarity measure between attributes; some focus on
global similarity, and others search for partial matches [Ankerst
et al. 98].

13.4 Aggregate

The other major reduction design choice is aggregation, so that a
group of elements is represented by a new derived element that
stands in for the entire group. Elements are merged together with
aggregation, as opposed to eliminated completely with filtering. Ag-
gregation and filtering can be used in conjunction with each other.

" An example of a complex
combination of both aggre-
gation and filtering is carto-
graphic generalization, dis-
cussed in Section 8.3.1.

As with filtering, aggregation can be used for both items and at-
tributes.

Aggregation typically involves the use of a derived attribute. A
very simple example is computing an average; the four other basic
aggregation operators are minimum, maximum, count, and sum.
However, these simple operators alone are rarely an adequate so-
lution. The challenge of aggregation is to avoid eliminating the
interesting signals in the dataset in the process of summarization.
The Anscombe’s Quartet example shown in Figure 1.3 exactly il-
lustrates the difficulty of adequately summarizing data, and thus
the limits of static visual encoding idioms that use aggregation.
Aggregation is nevertheless a powerful design choice, particularly
when used within interactive idioms where the user can change
the level of aggregation on the fly to inspect the dataset at different
levels of detail.

13.4.1 Item Aggregation

The most straightforward use of item aggregation is within static
visual encoding idioms; its full power and flexibility can be har-
nessed by interactive idioms where the view dynamically changes.

306 13. Reduce Items and Attributes

Example: Histograms

The idiom of histograms shows the distribution of items within an original
attribute. Figure 13.5 shows a histogram of the distribution of weights
for all of the cats in a neighborhood, binned into 5-pound blocks. The
range of the original attribute is partitioned into bins, and the number
of items that fall into each bin is computed and saved as a derived or-
dered attribute. The visual encoding of a histogram is very similar to bar
charts, with a line mark that uses spatial position in one direction and
the bins distributed along an axis in the other direction. One difference
is that histograms are sometimes shown without space between the bars
to visually imply continuity, whereas bar charts conversely have spaces
between the bars to imply discretization. Despite their visual similarity,
histograms are very different than bar charts. They do not show the orig-
inal table directly; rather, they are an example of an aggregation idiom
that shows a derived table that is more concise than the original dataset.
The number of bins in the histogram can be chosen independently of the
number of items in the dataset. The choice of bin size is crucial and tricky:
a histogram can look quite different depending on the discretization cho-
sen. One possible solution to the problem is to compute the number of
bins based on dataset characteristics; another is to provide the user with
controls to easily change the number of bins interactively, to see how the
histogram changes.

20

15

10

5

0

Weight Class (lbs)

Figure 13.5. The histogram idiom aggregates an arbitrary number of items into a
concise representation of their distribution.

Idiom Histograms
What: Data Table: one quantitative value attribute.

What: Derived Derived table: one derived ordered key attribute
(bin), one derived quantitative value attribute (item
count per bin).

How: Encode Rectilinear layout. Line mark with aligned position
to express derived value attribute. Position: key at-
tribute.

13.4. Aggregate 307

Example: Continuous Scatterplots

Another example of aggregation is continuous scatterplots, where the prob-
lem of occlusion on scatterplots is solved by plotting an aggregate value
at each pixel rather than drawing every single item as an individual point.
Occlusion can be a major readability problem with scatterplots, because
many dots could be overplotted on the same location. Size coding exacer-
bates the problem, as does the use of text labels. Continuous scatterplots
use color coding at each pixel to indicate the density of overplotting, often
in conjunction with transparency. Conceptually, this approach uses a de-
rived attribute, overplot density, which can be calculated after the layout
is computed. Practically, many hardware acceleration techniques sidestep
the need to do this calculation explicitly.

Figure 13.6 shows a continuous scatterplot of a tornado air-flow data-
set, with the magnitude of the velocity on the horizontal and the z-direction
velocity on the vertical. The density is shown with a log-scale sequential
colormap with monotonically increasing luminance. It starts with dark
blues at the low end, continues with reds in the middle, and has yellows
and whites at the high end.

Scatterplots began as a idiom for discrete, categorical data. They have
been generalized to a mathematical framework of density functions for
continuous data, giving rise to continuous scatterplots in the 2D case

Figure 13.6. The continuous scatterplot idiom uses color to show the density
at each location, solving the problem of occlusion from overplotting and allowing
scalability to large datasets. From [Bachthaler and Weiskopf 08, Figure 9].

308 13. Reduce Items and Attributes

and continuous histograms in the 1D case [Bachthaler and Weiskopf 08].
Continuous scatterplots use a dense, space-filling 2D matrix alignment,
where each pixel is given a different color. Although the idiom of continu-
ous scatterplots has a similar name to the idiom of scatterplots, analysis
via the framework of design choices shows that the approach is in fact
very different.

Idiom Continuous Scatterplots
What: Data Table: two quantitative value attributes.

What: Derived Derived table: two ordered key attributes (x, y pixel
locations), one quantitative attribute (overplot den-
sity).

How: Encode Dense space-filling 2D matrix alignment, sequential
categorical hue + ordered luminance colormap.

How: Reduce Item aggregation.

Example: Boxplot Charts

The visually concise idiom of boxplots shows an aggregate statistical sum-
mary of all the values that occur within the distribution of a single quan-
titative attribute. It uses five derived variables carefully chosen to provide
information about the attribute’s distribution: the median (50% point), the
lower and upper quartiles (25% and 75% points), and the upper and lower
fences (chosen values near the extremes, beyond which points should be
counted as outliers). Figure 13.7(a) shows the visual encoding of these five
numbers using a simple glyph that relies on vertical spatial position. The
eponymous box stretches between the lower and upper quartiles and has
a horizontal line at the median. The whiskers are vertical lines that extend
from the core box to the fences marked with horizontal lines.⋆ Outliers be-⋆ Boxplots are also known

as box-and-whisker dia-
grams.

yond the range of the chosen fence cutoff are shown explicitly as discrete
dots, just as in scatterplots or dot charts.

A boxplot is similar in spirit to an individual bar in a bar chart in
that only a single spatial axis is used to visually encode data, but box-
plots show five numbers through the use of a glyph rather than the single
number encoded by the linear mark in a bar chart. A boxplot chart fea-
tures multiple boxplots within a single shared frame to contrast different
attribute distributions, just as bar charts show multiple bars along the
second axis. In Figure 13.7, the quantitative value attribute is mapped to
the vertical axis and the categorical key attribute to the horizontal one.

The boxplot can be considered an item reduction idiom that provides
an aggregate view of a distribution through the use of derived data. Box-

13.4. Aggregate 309

n s k mm

2
0

2
4

(a)

n s k mm

2
0

2
4

(b)

Figure 13.7. The boxplot is an idiom presenting summary statistics for the distri-
bution of a quantitative attribute, using five derived values. These plots illustrate
four kinds of distributions: normal (n), skewed (s), peaked (k), and multimodal
(mm). (a) Standard box plots. (b) Vase plots, which use horizontal spatial position
to show density directly. From [Wickham and Stryjewski 12, Figure 5].

plots are highly scalable in terms of aggregating the target quantitative
attribute from what could be an arbitrarily large set of values down to five
numbers; for example, it could easily handle from thousands to millions
of values within that attribute. The spatial encoding of these five numbers
along the central axis requires only a moderate amount of screen space,
since we have high visual acuity with spatial position. Each boxplot re-
quires only a very small amount of screen space along the secondary axis,
leading to a high level of scalability in terms of the number of categorical
values that can be accommodated in a boxplot chart; roughly hundreds.

Boxplots directly show the spread, namely, the degree of dispersion,
with the extent of the box. They show the skew of the distribution com-
pared with a normal distribution with the peak at the center by the asym-
metry between the top and bottom sections of the box. Standard boxplots
are designed to handle unimodal data, where there is only one value that
occurs the most frequently. There are many variants of boxplots that
augment the basic visual encoding with more information. Figure 13.7(b)
shows a variable-width variant called the vase plot that uses an additional
spatial dimension within the glyph by altering the width of the central
box according to the density, allowing a visual check if the distribution
is instead multimodal, with multiple peaks. The variable-width variants
require more screen space along the secondary axis than the simpler ver-
sion, in an example of the classic cost–benefit trade-off where conveying
more information requires more room.

310 13. Reduce Items and Attributes

Idiom Boxplot Charts
What: Data Table: many quantitative value attributes.

What: Derived Five quantitative attributes for each original attribute,
representing its distribution.

Why: Tasks Characterize distribution; find outliers, extremes, av-
erages; identify skew.

How: Encode One glyph per original attribute expressing derived
attribute values using vertical spatial position, with
1D list alignment of glyphs into separated with hori-
zontal spatial position.

How: Reduce Item aggregation.

Scale Items: unlimited. Attributes: dozens.

Many of the interesting uses of aggregation in vis involve dy-
namically changing sets: the mapping between individual items
and the aggregated visual mark changes on the fly. The simple
case is to allow the user to explicitly request aggregation and deag-
gregation of item sets. More sophisticated approaches do these
operations automatically as a result of higher-level interaction and
navigation, usually based on spatial proximity.

Example: SolarPlot

Figure 13.8 shows the example of SolarPlot, a radial histogram with an in-
teractively controllable aggregation level [Chuah 98]. The user directly ma-
nipulates the size of the base circle that is the radial axis of the chart. This
change of radius indirectly changes the number of available histogram
bins, and thus the aggregation level. Like all histograms, the SolarPlot ag-
gregation operator is count: the height of the bar represents the number
of items in the set. The dataset shown is ticket sales over time, starting
from the base of the circle and progressing counterclockwise to cover 30
years in total. The small circle in Figure 13.8(a) is heavily aggregated. It
does show an increase in ticket sales over the years. The larger circle in
Figure 13.8(b) is less aggregated, and seasonal patterns within each year
can be distinguished.

Idiom SolarPlot
What: Data Table: one quantitative attribute.

What: Derived Derived table: one derived ordered key attribute
(bin), one derived quantitative value attribute (item

13.4. Aggregate 311

(a) (b)

Figure 13.8. The SolarPlot circular histogram idiom provides indirect control of
aggregation level by changing the circle size. (a) The small circle shows the in-
crease in ticket sales over time. (b) Enlarging the circle shows seasonal patterns
in addition to the gradual increase. From [Chuah 98, Figures 1 and 2].

count per bin). Number of bins interactively con-
trolled.

How: Encode Radial layout, line marks. Line length: express de-
rived value attribute; angle: key attribute.

How: Reduce Item aggregation.

Scale Original items: unlimited. Derived bins: proportional
to screen space allocated.

The general design choice of hierarchical aggregation is to con-
struct the derived data of a hierarchical clustering of items in the
original dataset and allow the user to interactively control the level
of detail to show based on this hierarchy. There are many specific
examples of idioms that use variants of this design choice. The
cluster–calendar system in Figure 6.7 is one example of hierarchi-
cal aggregation. Another is hierarchical parallel coordinates.

Example: Hierarchical Parallel Coordinates

The idiom of hierarchical parallel coordinates [Fua et al. 99] uses interac-
tively controlled aggregation as a design choice to increase the scalability
of the basic parallel coordinates visual encoding to hundreds of thousands
of items. The dataset is transformed by computing derived data: a hier-
archical clustering of the items. Several statistics about each cluster are
computed, including the number of points it contains; the mean, mini-
mum, and maximum values; and the depth in the hierarchy. A cluster
is represented by a band of varying width and opacity, where the mean
is in the middle and width at each axis depends on the minimum and

312 13. Reduce Items and Attributes

(a) (b) (c)

Figure 13.9. Hierarchical parallel coordinates provide multiple levels of detail. (a) The single top cluster has large
extent. (b) When several clusters are shown, each has a smaller extent. (c) When many clusters are shown, the
proximity-based coloring helps them remain distinguishable from each other. From [Fua et al. 99, Figure 4].

maximum item values for that attribute within the cluster. Thus, in the
limit, a cluster of a single item is shown by a single line, just as with the
original idiom. The cluster bands are colored according to their proximity
in the cluster hierarchy, so that clusters far away from each other have
very different colors.

The level of detail displayed at a global level for the entire dataset can
be interactively controlled by the user using a single slider. The parameter
controlled by that slider is again a derived variable that varies the aggre-
gate level of detail shown in a smooth and continuous way. Figure 13.9
shows a dataset with eight attributes and 230,000 items at different lev-
els of detail. Figure 13.9(a) is the highest-level overview showing the single
top-level cluster, with very broad bands of green. Figure 13.9(b) is the mid-
level view showing several clusters, where the extents of the tan cluster are
clearly distinguishable from the now-smaller green one. Figure 13.9(c) is
a more detailed view with dozens of clusters that have tighter bands; the
proximity-based coloring mitigates the effect of occlusion.

Idiom Hierarchical Parallel Coordinates
What: Data Table.

What: Derived Cluster hierarchy atop original table of items. Five
per-cluster attributes: count, mean, min, max, depth.

How: Encode Parallel coordinates. Color clusters by proximity in
hierarchy.

How: Reduce Interactive item aggregation to change level of detail.

Scale Items: 10,000–100,000. Clusters: one dozen.

13.4. Aggregate 313

(a) (b) (c)

Figure 13.10. Modifiable Areal Unit Problem (MAUP) example, showing how different boundaries for aggregation
regions lead to very different visual patterns on choropleth maps. (a) Central region is high density. (b) Central region
is medium density. (c) Central region is low density. From http://www.e-education.psu.edu/geog486/l4 p7.html,
Figure 4.cg.6.

13.4.2 Spatial Aggregation
The challenge of spatial aggregation is to take the spatial nature of
data into account correctly when aggregating it. In the cartography
literature, the modifiable areal unit problem (MAUP) is a major con-
cern: changing the boundaries of the regions used to analyze data
can yield dramatically different results. Even if the number of units
and their size does not change, any change of spatial grouping can
lead to a very significant change in analysis results. Figure 13.10
shows an example, where the same location near the middle of the
map has a different density level depending on the region bound-
aries: high in Figure 13.10(a), medium in Figure 13.10(b), and low
in Figure 13.10(c). Moreover, changing the scale of the units also
leads to different results. The problem of gerrymandering, where
the boundaries of voting districts are manipulated for political gain,
is the instance of the MAUP best known to the general public.

Example: Geographically Weighted Boxplots

The geowigs family of idioms, namely, geographically weighted interac-
tive graphics, provides sophisticated support for spatial aggregation using
geographically weighted regression and geographically weighted summary
statistics [Dykes and Brunsdon 07]. Figure 13.11 shows a multivariate
geographic dataset used to explore social issues in 19th century France.
The six quantitative attributes are population per crime against persons
(x1), population per crime against property (x2), percentage who can read

314 13. Reduce Items and Attributes

(a) (b)

(c) (d)

Figure 13.11. Geowigs are geographically weighted interactive graphics. (a) A choropleth map showing attribute
x1. (b) The set of gw-boxplots for all six attributes at two scales. (c) Weighting maps showing the scales: local and
larger. (d) A gw-mean map at the larger scale. From [Dykes and Brunsdon 07, Figures 7a and 2].

13.4. Aggregate 315

and write (x3), donations to the poor (x4), population per illegitimate birth
(x5), and population per suicide (x6).

Figure 13.11(a) shows a standard choropleth map colored by personal
crime attribute x1, with the interactively selected region Creuse (23) high-
lighted. Figure 13.11(b) shows gw-boxplots for all six attributes, at two

" Choropleth maps are
covered in Section 8.3.1.

scales. The gw-boxplot, a geographically weighted boxplot geowig, sup-
ports comparison between the global distribution and the currently chosen
spatial scale using the design choice of superimposed layers. The global
statistical distribution is encoded by the gray boxplot in the background,
and the local statistics for the interactively chosen scale are encoded by
a foreground boxplot in green. Figure 13.11(c) shows the weighting maps

" Boxplots are covered in
Section 13.4.1.

for the currently chosen scale of each gw-boxplot set: very local on top,
and a larger scale on the bottom. Figure 13.11(d) shows a gw-mean map,
a geographically weighted mean geowig, weighted according to the same
larger scale.

At the local level, the first x1 attribute is clearly an outlier in the gw-
boxplot, matching that region’s pale color in the choropleth map. When
weighted according to a larger scale, that attribute’s distribution is close
to the global one in both the boxplot, matching the mid-range color in the
gw-mean map geowig in Figure 13.11(d).

Idiom Geographically Weighted Boxplots
What: Data Geographic geometry with area boundaries. Table:

Key attribute (area), several quantitative value at-
tributes. Table: Five-number statistical summary dis-
tributions for each original attribute.

What: Derived Multidimensional table: key attribute (area), key at-
tribute (scale), quantitative value attributes (geo-
graphically weighted statistical summaries for each
area at multiple scales).

How: Encode Boxplot.

How: Facet Superimposed layers: global boxplot as gray back-
ground, current-scale boxplot as green foreground.

How: Reduce Spatial aggregation.

13.4.3 Attribute Aggregation: Dimensionality Reduction
Just as attributes can be filtered, attributes can also be aggre-
gated, where a new attribute is synthesized to take the place of
multiple original attributes. A very simple approach to aggregating
attributes is to group them by some kind of similarity measure, and

316 13. Reduce Items and Attributes

then synthesize the new attribute by calculate an average across
that similar set. A more complex approach to aggregation is dimen-
sionality reduction (DR), where the goal is to preserve the meaning-
ful structure of a dataset while using fewer attributes to represent
the items.

13.4.3.1 Why and When to Use DR?

In the family of idioms typically called dimensionality reduction,
the goal is to preserve the meaningful structure of a dataset while
using fewer attributes to represent the items.⋆ The rationale that⋆ The words attribute ag-

gregation, attribute syn-
thesis, and dimensional-
ity reduction (DR) are all
synonyms. The term di-
mensionality reduction is
very common in the litera-
ture. I use attribute aggre-
gation as a name to show
where this design choice fits
into the taxonomy of the
book; it is not a typical us-
age by other authors. Al-
though the term dimension-
ality reduction might logi-
cally seem to include at-
tribute filtering, it is more
typically used to mean at-
tribute synthesis through
aggregation.

a small set of new synthetic attributes might be able to faithfully
represent most of the structure or variance in the dataset hinges
on the assumption that there is hidden structure and significant
redundancy in the original dataset because the underlying latent
variables could not be measured directly.

Nonlinear methods for dimensionality reduction are used when
the new dimensions cannot be expressed in terms of a straight-
forward combination of the original ones. The multidimensional
scaling (MDS) family of approaches includes both linear and non-
linear variants, where the goal is to minimize the differences in
distances between points in the high-dimensional space versus the
new lower-dimensional space.

Example: Dimensionality Reduction for Document Collections

A situation where dimensionality reduction is frequently used is when
users are faced with the need to analyze a large collection of text docu-
ments, ranging from thousands to millions or more. Although we typically
read text when confronted with only a single document, document collec-
tion vis is typically used in situations where there are so many documents
in the collection that simply reading each one is impractical. Document
collections are not directly visualizeable, but they can be transformed into
a dataset type that is: a derived high-dimensional table.

" Deriving new data is dis-
cussed in Section 3.4.2.3.

Text documents are usually transformed by ignoring the explicit lin-
ear ordering of the words within the document and treating it as a bag of
words: the number of times that each word is used in the document is
simply counted. The result is a large feature vector, where the elements
in the vector are all of the words in the entire document collection. Very
common words are typically eliminated, but these vectors can still con-
tain tens of thousands of words. However, these vectors are very sparse,
where the overwhelming number of values are simply zero: any individual
document contains only a tiny fraction of the possible words.

13.4. Aggregate 317

The result of this transformation is a derived table with a huge number
of quantitative attributes. The documents are the items in the table, and
the attribute value for a particular word contains the number of times that
word appears in the document. Looking directly at these tables is not very
interesting.

This enormous table is then transformed into a much more compact
one by deriving a much smaller set of new attributes that still represents
much of the structure in the original table using dimensionality reduction.
In this usage, there are two stages of constructing derived data: from a
document collection to a table with a huge number of attributes, and then
a second step to get down to a table with the same number of items but
just a few attributes.

The bag-of-words DR approach is suitable when the goal is to ana-
lyze the differential distribution of words between the documents, or to
find clusters of related documents based on common word use between
them. The dimensionally reduced data is typically shown with a scatter-
plot, where the user’s goal is cluster discovery: either to verify an existing
conjecture about cluster structure or to find previously unknown cluster
structure.

Images, videos, and other multimedia documents are usually trans-
formed to create derived attributes in a similar spirit to the transforma-
tions done to text documents. One major question is how to derive new
attributes that compactly represent an image as a set of features. The
features in text documents are relatively easy to identify because they’re
based on the words; even in this case, natural language processing tech-
niques are often used to combine synonyms and words with the same
stem together. Image features typically require even more complex com-
putations, such as detecting edges within the image or the set of col-
ors it contains. Processing individual videos to create derived feature
data can take into account temporal characteristics such as interframe
coherence.

A typical analysis scenario is complex enough that it is useful to break
it down into a chained sequence, rather than just analyzing it as a sin-
gle instance. In the first step, a low-dimensional table is derived from
the high-dimensional table using multidimensional scaling. In the second
step, the low-dimensional data is encoded as a color-coded scatterplot,
according to a conjectured clustering. The user’s goal is a discovery task,
to verify whether there are visible clusters and identify those that have
semantic meaning given the documents that comprise them. Figure 13.12
shows a scatterplot view of a real-world document collection dataset, di-
mensionally reduced with the Glimmer multidimensional scaling (MDS)
algorithm [Ingram et al. 09]. In this scenario, the user can interactively
navigate within the scatterplot, and selecting a point shows document key-
words in a popup display and the full text of the document in another view.
In the third step, the user’s goal is to produce annotations by adding text
labels to the verified clusters. Figure 13.13 summarizes this what–why–
how analyis.

318 13. Reduce Items and Attributes

Figure 13.12. Dimensionality reduction of a large document collection using Glimmer for multidimensional scaling.
The results are laid out in a single 2D scatterplot, allowing the user to verify that the conjectured clustering shown
with color coding is partially supported by the spatial layout. From [Ingram et al. 09, Figure 8].

Task 1

In
HD data

Out
2D data

ProduceIn High-
dimensional data

Why?What?

Derive

In
2D data

Task 2

Out 2D data

How?Why?What?

Encode
Navigate
Select

Discover
Explore
Identify

In 2D data
Out Scatterplot
Out Clusters &
points

Out
Scatterplot
Clusters & points

Task 3

In
Scatterplot
Clusters & points

Out
Labels for
clusters

Why?What?

Produce
Annotate

In Scatterplot
In Clusters & points
Out Labels for
clusters

wombat

Figure 13.13. A chained sequence of what–why–how analysis instances for the scenario of dimensionality reduction
of document collection data.

13.4. Aggregate 319

Idiom Dimensionality Reduction for Document Collections
What: Data Text document collection.

What: Derived Table with 10,000 attributes.

What: Derived Table with two attributes.

How: Encode Scatterplot, colored by conjectured clustering.

How: Reduce Attribute aggregation (dimensionality reduction) with
MDS.

Scale Original attributes: 10,000. Derived attributes: two.
Items: 100,000.

13.4.3.2 How to Show DR Data?

With standard dimensionality reduction techniques, the user
chooses the number of synthetic attributes to create. When the
target number of new attributes is two, the dimensionally reduced
data is most often shown as a scatterplot. When more than two
synthetic attributes are created, a scatterplot matrix (SPLOM) may
be a good choice. Although in general scatterplots are often used
to check for correlation between two attributes, that is not the goal
when inspecting scatterplots of dimensionally reduced data. The
point of dimensionality reduction is to automatically collapse cor-
related dimensions together into new synthetic dimensions; the
techniques are designed so that these new dimensions will not be
correlated. The tasks with scatterplots of dimensionally reduced
data are to verify or find whether the data items form meaningful
clusters and to verify or check whether the new synthetic attributes
are meaningful.

For both of these tasks, an important function is to be able
to select a low-dimensional point in the scatterplot and inspect
the high-dimensional data that it represents. Typically, the user
investigates by clicking on points and seeing if the spatial layout
implied by the low-dimensional positions of the points seems to
properly reflect the high-dimensional space.

Sometimes the dataset has no additional information, and the
scatterplot is simply encoding two-dimensional position. In many
cases there is a conjectured categorization of the points, which are
colored according to those categories. The task is then to check
whether the patterns of colors match up well with the patterns of
the spatial clusters of the reduced data, as shown in Figure 13.12.

320 13. Reduce Items and Attributes

When you are interpreting dimensionally reduced scatterplots it
is important to remember that only relative distances matter. The
absolute position of clusters is not meaningful; most techniques
create layouts where the image would have the same meaning if it
is rotated in an arbitrary direction, reflected with mirror symmetry
across any line, or rescaled to a different size.⋆⋆ In mathematical ter-

minology, the layouts are
affine invariant.

Another caution is that this inspection should be used only
to find or verify large-scale cluster structure. The fine-grained
structure in the lower-dimensional plots should not be considered
strongly reliable because some information is lost in the reduction.
That is, it is safe to assume that major differences in the distances
between points are meaningful, but minor differences in distances
may not be a reliable signal.

Empirical studies have shown that two-dimensional scatter-
plots or SPLOMS are the safest idiom choices for inspecting di-
mensionally reduced data [Sedlmair et al. 13]. While the idiom
of three-dimensional scatterplots has been proposed many times,
they are susceptible to all of the problems with 3D representations.
As discussed in Section 6.3, they are an example of the worst possi-
ble case for accurate depth perception, an abstract cloud of points
floating in three-dimensional space. Although some systems use
the idiom of 3D landscapes for dimensionally reduced data, this
approach is similarly problematic, for reasons also covered in Sec-
tion 6.3.

13.5 Further Reading

Filtering Early work in dynamic queries popularized filtering with
tightly coupled views and extending standard widgets to bet-
ter support these queries [Ahlberg and Shneiderman 94].

Scented Widgets Scented widgets [Willett et al. 07] allude to the idea
of information scent proposed within the theory of informa-
tion foraging from Xerox PARC [Pirolli 07].

Boxplots The boxplot was originally proposed by Tukey and popu-
larized through his influential book on Exploratory Data Anal-
ysis [Tukey 77]. A recent survey paper discusses the many
variants of boxplots that have been proposed in the past 40
years [Wickham and Stryjewski 12].

Hierarchical Aggregation A general conceptual framework for analyz-
ing hierarchical aggregation is presented in a recent paper

13.5. Further Reading 321

[Elmqvist and Fekete 10]. Earlier work presented hierarchical
parallel coordinates [Fua et al. 99].

Spatial Aggregation The Modifiable Areal Unit Problem is covered in
a recent handbook chapter [Wong 09]; a seminal booklet lays
out the problem in detail [Openshaw 84]. Geographically
weighted interactive graphics, or geowigs for short, support
exploratory analysis that explicitly takes scale into account
[Dykes and Brunsdon 07].

Attribute Reduction DOSFA [Yang et al. 03a] is one of many ap-
proaches to attribute reduction from the same group [Peng
et al. 04,Yang et al. 04,Yang et al. 03b]. The DimStiller system
proposes a general framework for attribute reduction [Ingram
et al. 10]. An extensive exploration of similarity metrics for
dimensional aggregation was influential early work [Ankerst
et al. 98].

Dimensionality Reduction The foundational ideas behind multidimen-
sional scaling were first proposed in the 1930s [Young and
Householder 38], then further developed in the 1950s [Torg-
erson 52]. An early proposal for multidimensional scaling
(MDS) in the vis literature used a stochastic force simulation
approach [Chalmers 96]. The Glimmer system exploits the
parallelism of graphics hardware for MDS; that paper also
discusses the history and variants of MDS in detail [Ingram
et al. 09]. Design guidelines for visually encoding dimen-
sionally reduced data suggest avoiding the use of 3D scat-
terplots [Sedlmair et al. 13].

Embed

Elide Data

Superimpose Layer

Distort Geometry

Reduce

Filter

Aggregate

Embed

Figure 14.1. Design choices for embedding focus information within context.

Embed: Focus+Context

Chapter 14

14.1 The Big Picture

The family of idioms known as focus+context are based on the de-
sign choice to embed detailed information about a selected set—the
focus—within a single view that also contains overview informa-
tion about more of the data—the context. These idioms reduce the
amount of data to show in the view through sophisticated combi-
nations of filtering and aggregation. The design considerations are
sufficiently complex that embedding is addressed separately in the
analysis framework as a special case. A very large family of specific
idioms that use some form of focus+context embedding has been
proposed.⋆

⋆ Many names are es-
sentially synonyms for
or special cases of fo-
cus+context : bifocal dis-
plays, degree-of-interest
models, detail in con-
text, distortion-oriented
presentations, distortion
viewing, elastic presen-
tation spaces, fisheye
lens, generalized fisheye
views, hyperbolic geom-
etry, multifocal displays,
nonlinear magnification
fields, pliable surfaces,
polyfocal projections,
rubber sheet navigation,
and stretch and squish
navigation.

One design choice for embedding is to elide items, where some
items are filtered out completely while others are summarized us-
ing dynamic aggregation for context; only the focus items are shown
in detail. Another choice is to superimpose layers, where a local
region of focus information can be moved against the background
layer of contextual information. A third choice is to distort the ge-
ometry, where context regions are compressed to make room for
magnified focus regions. In all of these cases, there is a choice
of single or multiple regions of focus. With geometric distortion,
there are choices for region shape, region extent, and interaction
metaphor. Figure 14.1 summarizes this set of design choices.

14.2 Why Embed?

The goal of embedding focus and context together is to mitigate the
potential for disorientation that comes with standard navigation
techniques such as geometric zooming. With realistic camera mo-
tion, only a small part of world space is visible in the image when
the camera is zoomed in to see details for a small region. With

" Zooming is discussed in
Section 11.5.1.

323

324 14. Embed: Focus+Context

geometric navigation and a single view that changes over time, the
only way to maintain orientation is to internally remember one’s
own navigation history. Focus+context idioms attempt to support
orientation by providing contextual information intended to act as
recognizable landmarks, using external memory to reduce internal
cognitive load.

Focus+context idioms are thus an example of nonliteral navi-
gation, in the same spirit as semantic zooming. The shared idea
with all of them is that a subset of the dataset items are interac-
tively chosen by the user to be the focus and are drawn in detail.
The visual encoding also includes information about some or all
of the rest of the dataset shown for context, integrated into and
embedded within the same view that shows the focus items. Some
idioms achieve this selective presentation without the use of geo-
metric distortion, but many use carefully chosen distortion to com-
bine magnified focus regions and minimized context regions into a
unified view.

Embedding idioms cannot be fully understood when considered
purely from the visual encoding point of view or purely from the
interaction point of view; they are fundamentally a synthesis of
both. The key idea of focus+context is that the focus set changes
dynamically as the user interacts with the system, and thus the
visual representation also changes dynamically. Many of the id-
ioms involve indirect control, where the focus set is inferred via
the combination of the user’s navigation choices and the inherent
structure of the dataset.

14.3 Elide

One design choice for embedding is elision: some items are omitted
from the view completely, in a form of dynamic filtering. Other
items are summarized using dynamic aggregation for context, and
only the focus items are shown in detail.

A general framework for reasoning about these three sets of
items is a degree of interest (DOI) function: DOI = I(x) − D(x, y).
In this equation, I is an interest function; D is the distance, either
semantic or spatial; x is the location of an item; y is the current
focus point [Furnas 86]. There could be only one focus point, or
multiple independent foci. The DOI function can be thought of as
a continuous function that does not explicitly distinguish between
focus items to show in detail, context items to aggregate, and com-

14.3. Elide 325

pletely elided items to filter out. Those interpretations are made by
algorithms that use the function, often based on threshold values.
These interest functions typically exploit knowledge about dataset
structure, especially hierarchical relationships. For example, if a
few subsections of a document were selected to be the foci, then a
good context would be their enclosing sections.

Example: DOITrees Revisited

The DOITrees Revisited system shown in Figure 14.2 uses multiple foci
to show an elided version of a 600,000 node tree. The shaded triangles
provide an aggregate representation showing the size of the elided sub-
trees. The context in which to show them is computed using tree traversal
from the many focus nodes up toward their common ancestors and the
tree root. In this case, distance is computed topologically based on hops
through the tree, rather than geometrically through Euclidean space. The
focus nodes can be chosen explicitly by clicking, or indirectly through
searching.

Figure 14.2. DOITrees Revisited uses elision to show multiple focus nodes within
context in a 600,000 node tree. From [Heer and Card 04, Figure 1].

System DOITrees Revisited
What: Data Tree.

How: Encode Node–link layout.

How: Reduce Embed: elide, multiple foci.

Scale Nodes: hundreds of thousands.

326 14. Embed: Focus+Context

14.4 Superimpose

Another choice for integrating focus and context is the use of su-
perimposed layers. In this case, the focus layer is limited to a local
region, rather than being a global layer that stretches across the
entire view to cover everything.

" Superimposing layers
globally is discussed in
Section 12.5.

Example: Toolglass and Magic Lenses

The Toolglass and Magic Lenses system shown in Figure 14.3 uses a see-
through lens to show color-coded Gaussian curvature in a foreground
layer, atop the background layer consisting of the rest of the 3D scene.
Within the lens, details are shown, and the unchanged remainder of the
other view provides context. The lens layer occludes the region beneath
it. The system handled many different kinds of data with different visual
encodings of it; this example shows 3D spatial data. The curvature lens
shows that the object in the scene that appears to be a perfect sphere
when rendered with standard computer graphics techniques is in fact a
faceted object made from multiple patches.

Figure 14.3. The Toolglass and Magic Lenses idiom provides focus and context
through a superimposed local layer: the see-through lens color codes the patch-
work sphere with Gaussian curvature information and provides a numeric value for
the point at the center. From [Bier et al. 93, Figure 12].

System Toolglass and Magic Lenses
What: Data Spatial, quantitative curvature attribute across sur-

face.
How: Encode Use given, color by curvature.

How: Reduce Embed: superimpose.

14.5. Distort 327

14.5 Distort

In contrast to using elision or layers, many focus+context idioms
solve the problem of integrating focus and context into a single
view using geometric distortion of the contextual regions to make
room for the details in the focus regions.

There are several major design choices that underlie all geo-
metric distortion idioms. As with the other two choices, there is
the choice of the number of focus regions: is there only a single re-
gion of focus, or does the idiom allow multiple foci? Another choice
is the shape of the focus: is it a radial, rectangular, or a completely
arbitrary shape? A third choice is the extent of the focus: is it
global across the entire image, or constrained to just a local re-
gion? A fourth choice is the interaction metaphor. One possibility
is constrained geometric navigation. Another is moveable lenses,
evocative of the real-world use of a magnifying glass lens. A third
is stretching and squishing a rubber sheet. A fourth is working
with vector fields.

These choices are now illustrated through five examples of dis-
tortion idioms: 3D perspective, fisheye lenses, hyperbolic geome-
try, stretch and squish navigation, and magnification fields.

Example: 3D Perspective

Several early idioms used 3D perspective to provide a global distortion
region with a single focus point. The interaction metaphor was con-
strained geometric navigation. The perspective distortion arising from

Figure 14.4. The Cone Tree system used 3D perspective for focus+context, pro-
viding a global distortion region with a single focus point, and using standard geo-
metric navigation for interaction. From [Card and Mackinlay 99, Figure 10].

328 14. Embed: Focus+Context

the standard 3D computer graphics transformations is a very intuitive
and familiar effect. It was used with the explicit intention of providing a
distortion-based focus+context user experience in many early vis systems,
such as the influential Cone Tree system shown in Figure 14.4 [Robertson
et al. 91].

Although many people found it compelling and expressed a strong pref-
erence for it on their first encounter, this approach lost popularity as the
trade-offs between the costs and benefits of 3D spatial layout for abstract
information became more understood.

" The costs and benefits
of 3D are discussed in Sec-
tion 6.3.

System Cone Trees
What: Data Tree.

How: Encode 3D node–link layout.

How: Reduce Embed: distort with 3D perspective; single global fo-
cus region.

Scale Nodes: thousands.

Example: Fisheye Lens

The fisheye lens distortion idiom uses a single focus with local extent and
radial shape and the interaction metaphor of a draggable lens on top of
the main view. The fisheye idiom provides the same radial distortion effect
as the physical optical lenses used with cameras and for door peepholes.
The lens interaction provides a foreground layer that completely replaces
what is beneath it, like the magic lens idiom, rather than preserving what
is beneath and superimposing additional information on top of it, like the
superimposing layer design choice for faceting data between views. The
lens can be moved with the standard navigation approach of 2D trans-
lation. The mathematics of fisheye distortion is straightforward; modern
graphics hardware supports high performance fisheye lenses using vertex
shaders [Lambert et al. 10].

Figure 14.5 shows two examples of a fisheye lens used with an online
poker player dataset. The scatterplot in Figure 14.5(a) shows the per-
centage of time that a player goes to showdown (playing until people have
to show all of their cards) versus the flop (playing until the point where
three cards are placed face-up on the board). In the dense matrix view
of Figure 14.5(b), blocks representing players are color coded according
to their winning rate, and a space-filling curve is used to lay out these
blocks in order of a specific derived attribute; in this case, a particular
betting strategy. In the parts of the scene under the fisheye lens, the la-
bels are large enough to read; that focus region remains embedded within

14.5. Distort 329

(a) (b)

Figure 14.5. Focus+context with interactive fisheye lens, with poker player data-
set. (a) Scatterplot showing correlation between two strategies. (b) Dense matrix
view showing correlation between a specific complex strategy and the player’s win-
ning rate, encoded by color.

the surrounding context, showing the global pattern within the rest of the
dataset.

Idiom Fisheye Lens
What: Data Any data.

How: Encode Any layout.

How: Reduce Embed: distort with fisheye; single focus, local radial
region, moveable lens interaction metaphor.

Example: Hyperbolic Geometry

The distortion idiom of hyperbolic geometry uses a single radial global
focus with the interaction metaphor of hyperbolic translation. This ap-
proach exploits the mathematics of non-Euclidean geometry to elegantly
accommodate structures such as trees that grow by an exponential fac-
tor, in contrast to standard Euclidean geometry where there is only a
polynomial amount of space available for placing items. An infinite non-
Euclidean plane can be mapped to a finite Euclidean circle, and similarly
an infinite non-Euclidean volume can be mapped to a finite sphere in Eu-
clidean space. The interaction metaphor is hyperbolic translation, which
corresponds to changing the focus point of the projection; the visual effect

330 14. Embed: Focus+Context

Figure 14.6. Animated transition showing navigation through 3D hyperbolic geom-
etry for a file system tree laid out with the H3 idiom, where the first three frames
show hyperbolic translation changing the focus point and the last three show stan-
dard 3D rotation spinning the structure around. From [Munzner 98, Figure 3].

14.5. Distort 331

is changing which items are magnified at the center, versus minimized at
the periphery, for a global effect with similarities to using a fisheye lens
that extends across the entire scene.

Figure 14.6 shows a 3D hyperbolic node–link tree representing the
structure of a file system laid out with the H3 idiom [Munzner 98], through
a sequence of frames from an animated transition as the view changes over
time. The first three frames show hyperbolic translation to change what
part of the tree is magnified, where the subtree on the right side gets larger
as it moves toward the center of projection. The last three frames show
standard rotation to clarify the 3D structure. The rationale for using 3D
rather than 2D was to achieve greater information density, but at the cost
that any single frame is partially occluded.

" The costs and benefits of
using 3D for abstract data
are covered in Section 6.3.

Idiom Hyperbolic Geometry
What: Data Tree or network.

How: Encode Hyperbolic layout.

How: Reduce Embed: distort by projecting from hyperbolic to Eu-
clidean space; single global radial focus; hyperbolic
translation interaction metaphor.

Example: Stretch and Squish Navigation

The stretch and squish navigation idiom uses multiple rectangular foci of
global extent for distortion, and the interaction metaphor where enlarg-
ing some regions causes others to shrink. In this metaphor, the entire
scene is considered to be drawn on a rubber sheet where stretching one
region squishes the rest, as shown in Figures 11.7, 14.7, and 14.8. Fig-
ure 14.7 shows stretch and squish navigation with the TreeJuxtaposer
system [Munzner et al. 03], where Figure 14.7(a) shows two small trees
juxtaposed with linked highlighting and navigation, and Figure 14.7(b)
shows the result of multiple successive stretches within a single large tree.
The borders of the sheet stay fixed so that all items stay visible within the
viewport, although they may be projected to arbitrarily small regions of
the image. The user can choose to separately stretch the rectangular focal
regions in the horizontal and vertical directions.

These figures also illustrate the visual encoding idiom of guaranteed
visibility that ensures that important objects are always visible within the
scene, even if they are very small. Guaranteed visibility is an example
of aggregation that operates at the subpixel level and takes the impor-
tance attribute of each item into account. Standard graphics systems use
assumptions that work well when drawing realistic scenes but are not nec-
essarily true for abstract data. In reality, distant objects are not visually

332 14. Embed: Focus+Context

(a) (b)

Figure 14.7. TreeJuxtaposer uses stretch and squish navigation with multiple rect-
angular foci for exploring phylogenetic trees. (a) Stretching a single region when
comparing two small trees. (b) Stretching multiple regions within a large tree.
From [Munzner et al. 03, Figures 5 and 1].

Figure 14.8. PRISequenceJuxtaposer supports comparing gene sequences us-
ing the stretch and squish navigation idiom with the guaranteed visibility of marks
representing items with a high importance value, via a rendering algorithm with
custom subpixel aggregation. From [Slack et al. 06, Figure 3].

salient, so it is a reasonable optimization to simply not draw items that
are sufficiently far away. If the viewpoint is moved closer to these objects,
they will become larger on the image plane and will be drawn. However,
in abstract scenes the distance from the camera is a poor stand-in for the
importance value for an object; often an original or derived attribute is
used instead of or in combination with geometric distance. The example
in Figure 14.8 is a collection of gene sequences that are over 16,000 nu-
cleotides in width displayed in a frame of less than 700 pixels wide [Slack
et al. 06]. The red marks that indicate differences between gene sequences
stay visible at all times because they are given a high importance value,
even in very squished regions where hundreds or thousands of items may
fall within a single pixel. Figure 11.7 also illustrates this idiom: the value

14.5. Distort 333

used for the box color coding also indicates importance, so the boxes rep-
resenting alerts that are colored red are always visible.

Idiom Stretch and Squish Navigation
What: Data Any data.

How: Encode Any layout.

How: Reduce Embed: distort with stretch and squish; multiple foci,
global rectangular regions, stretch and squish navi-
gation interaction metaphor.

Example: Nonlinear Magnification Fields

The nonlinear magnification fields idiom relies on a general computational
framework featuring multiple foci of arbitrary magnification levels and
shapes, whose scope can be constrained to affect only local regions. The
underlying mathematical framework supports calculations of the implicit

(a)

(b)

Figure 14.9. General frameworks calculate the magnification and minimization fields needed to achieve desired
transformations in the image. (a) Desired transformations. (b) Calculated magnification fields. From [Keahey 98,
Figure 3].

334 14. Embed: Focus+Context

magnification field required to achieve a desired transformation effect, as
shown in Figure 14.9(a). The framework supports many possible inter-
action metaphors including lenses and stretchable surfaces. It can also
expose the magnification fields shown in Figure 14.9(b) directly to the user,
for example, to support data-driven magnification trails of moving objects.

Idiom Nonlinear Magnification Fields
What: Data Any data.

How: Encode Any layout.

How: Reduce Embed: distort with magnification fields; multiple
foci, local arbitrary regions, lens or stretch or data-
driven interaction metaphors.

14.6 Costs and Benefits: Distortion

Embedding focus information within surrounding context in a sin-
gle view is one of five major alternatives to showing complex infor-
mation. The other four choices are deriving new data, manipulat-
ing a single changing view, faceting into multiple views, and reduc-
ing the amount of data to show. The trade-offs of cost and benefits
between these five approaches are still not fully understood.

What has gradually become clear is that distortion-based fo-
cus+context in particular has measurable costs, in addition to
whatever benefits it may provide. One cost is the problem that dis-
tance or length judgements are severely impaired, so distortion is a
poor match with any tasks that require such comparisons. Thus,
one of the most successful use cases for geometric distortion is
with exploration of node–link layouts for networks and trees. The
task of understanding the topological structure of the network is
likely to be robust to distortion when that structure is shown us-
ing lines to connect between nodes, or containment to show nested
parent–child node relationships, because precise angle and length
judgements are not necessary.

One potential cost is that users may not be aware of the dis-
tortion, and thus misunderstand the underlying object structure.
This risk is highest when the user is exploring an unfamiliar or
sparse structure, and many idioms incorporate explicit indications
of distortion to lessen this risk. Hyperbolic views typically show
the enclosing circle or sphere, magnification fields often show a

14.6. Costs and Benefits: Distortion 335

superimposed grid or shading to imply the height of the stretched
surface.

Even when users do understand the nature of the distortion,
another cost is the internal overhead of maintaining object con-
stancy, which is the understanding that an item seen in two dif-
ferent frames represents the same object, just seen from a dif-
ferent viewpoint. Understanding the underlying shape of a com-
plex structure could require mentally subtracting the effect of the
transformation in order to recognize the relationship between the
components of an image before and after the transformation. Al-
though in most cases we do this calculation almost effortlessly
for standard 3D perspective distortion, the cost of mentally track-
ing general distortions increases as the amount of distortion in-
creases [Lam et al. 06]. Some empirical evidence shows that con-
strained and predictable distortion is better tolerated than more
drastic distortion [Lam and Munzner 10].

The originator of the generalized fisheye view approach has ex-
pressed surprise about the enthusiasm with which others have
embraced distortion and suggests that the question what is be-
ing shown in terms of selective filtering is more central than that
of how it is shown with any specific distortion idiom [Furnas 06].
For example, the fisheye metaphor is not limited to a geometric
lens used after spatial layout; it can be used directly on structured
data, such as a hierarchical document where some sections are
collapsed while others are left expanded.

Figure 14.10 illustrates four different approaches on the same
node–link graph [Lambert et al. 10]: a fisheye lens in Figure
14.10(a), an ordinary magnifying lens in Figure 14.10(b), a neigh-
borhood highlighting idiom using only superimposed layers in Fig-
ure 14.10(c), and a combination of that layering with the Bring
and Go interaction idiom in Figure 14.10(d). Discussing these ex-
amples in detail will shed some light on the costs and benefits of
distortion versus occlusion versus other interaction.

The local fisheye distortion has a small circle region of very high
magnification at the center of the lens surrounded by a larger in-
termediate region that continuously varies from medium magnifi-
cation to very high compression, returning to low compression in
the outer periphery. Although fisheye lenses were developed with
the goal of reducing the viewer’s disorientation, unfortunately they
can be quite disorienting. The continuous magnification change in-
troduces some amount of cognitive load to untangle the underlying
shape from the imposed distortion. Distortion is less problematic
with familiar shapes, like geographic maps of known places, be-

336 14. Embed: Focus+Context

(a) (b)

(c) (d)

Figure 14.10. Four approaches to graph exploration. (a) Fisheye lens. (b) Magni-
fying lens. (c) Neighborhood highlighting with layering. (d) Neighborhood highlight-
ing with both layering and Bring and Go interaction. From [Lambert et al. 10, Fig-
ures 2a, 2b, 3b, and 4b].

cause people can interpret the distortion as a change to a known
baseline. With unfamiliar structures, it can be difficult to recon-
struct the basic shape by mentally removing the distortion effects.
While these idioms are designed to be used in an interactive set-
ting, where the user quickly moves the lens around and compares
the undistorted to the distorted states, there is still some cognitive
load.

In contrast, the superimposed local magnifying lens has just
two discrete levels: a highly magnified circle of medium size, and
the low-compression periphery of medium size. There is a discon-
tinuous jump between these two levels, where the lens occludes
the immediately surrounding region. In this particular example,
the fisheye lens may be more difficult to use than the magnifying
lens; it is not clear that the benefit of avoiding occlusion is worth
the cost of interpreting the continuous magnification change.

14.7. Further Reading 337

The last two approaches show a specific region of interest, in
this case a local topological neighborhood of nodes reachable within
one or two hops from a chosen target node. The neighborhood
highlighting lens does not distort spatial position at all; it uses lay-
ering by reducing the opacity of items not in that neighborhood,
automatically calculating a lens diameter to accommodate the en-
tire neighborhood. While this approach would not help for tasks
where magnification is critical, such as reading node labels, it does
a good job of supporting path tracing.

A fisheye lens can be interpreted as a temporary warping that
affects the location of all objects within the active region. The Bring
and Go interaction idiom for network data [Moscovich et al. 09] is
also temporary, but selectively changes the location of only specific
objects of interest, by bringing the one-hop neighbors close to the
target node. The layout is designed to simplify the configuration as
much as possible while still preserving direction and relative dis-
tance information, in hopes of minimizing potential disorientation.
This interaction idiom exploits topological structure information to
reduce the cognitive load cost of tracking moving objects: only the
one-hop neighbors move during animated transitions, in contrast
to fisheye lenses that affect the positions of all items within their
span.

14.7 Further Reading

The Big Picture Two extensive surveys discuss a broad set of idioms
that use the choices of changing the viewpoint through nav-
igation, partitioning into multiple views, and embedding fo-
cus into context, including an assessment of the empirical
evidence on the strengths and weaknesses of these three ap-
proaches and guidelines for design [Cockburn et al. 08, Lam
and Munzner 10].

Early Work Early proposals for focus+context interfaces were the Bi-
focal Display [Spence and Apperley 82] and polyfocal car-
tography [Kadmon and Shlomi 78]. An early taxonomy of
distortion-based interfaces introduced the unifying vocabu-
lary of magnification and transformation functions [Leung and
Apperley 94].

Fisheye Views The fundamental idea of generalized fisheye views [Fur-
nas 82,Furnas 86] was followed up 20 years later with a paper

338 14. Embed: Focus+Context

questioning the overwhelming emphasis on geometric distor-
tion in the work of many others in the intervening decades
[Furnas 06].

3D Perspective Influential 3D focus+context interfaces from Xerox
PARC included the Perspective Wall [Mackinlay et al. 91] and
Cone Trees [Robertson et al. 91].

Frameworks Two general frameworks for focus+context magnifica-
tion and minimization are elastic presentation spaces [Carpen-
dale et al. 95,Carpendale et al. 96] and nonlinear magnifica-
tion fields [Keahey and Robertson 97].

Hyperbolic Geometry Hyperbolic 2D trees were proposed at Xerox
PARC [Lamping et al. 95] and 3D hyperbolic networks were
investigated at Stanford [Munzner 98].

Stretch and Squish Navigation The TreeJuxtaposer system proposed
the guaranteed visibility idiom and presented algorithms for
stretch and squish navigation of large trees [Munzner et al. 03],
followed by the PRISAD framework that provided further scal-
ability and handled several data types [Slack et al. 06].

This page intentionally left blankThis page intentionally left blank

(a) (b)

(c) (d)

(e) (f)

Figure 15.1. Six case studies of full vis systems. (a) Scagnostics, from [Wilkinson et al. 05, Figure 5]. (b) VisDB,
from [Keim and Kriegel 94, Figure 6]. (c) Hierarchical Clustering Explorer, from [Seo and Shneiderman 05, Figure
1]. (d) PivotGraph, from [Wattenberg 06, Figure 5]. (e) InterRing, from [Yang et al. 02, Figure 4]. (f) Constellation,
from [Munzner 00, Figure 5.5].

Analysis Case Studies

Chapter 15

15.1 The Big Picture
Figure 15.1 shows the six vis systems analyzed in this chapter
as full case studies. The Scagnostics system provides a scalable
summary of large scatterplot matrices through a derived SPLOM
based on classifying the geometric shapes formed by the point dis-
tributions in the original scatterplots [Wilkinson et al. 05, Wilkin-
son et al. 06]. The VisDB system for database vis treats an entire
database as a very large table of data, visually encoding it with
dense and space-filling layouts with items colored according to
their relevance for a specific query [Keim and Kriegel 94]. The Hi-
erarchical Clustering Explorer (HCE) system supports systematic
exploration of a multidimensional tables, such as those represent-
ing microarray measurements of gene expression in the genomics
domain, with an associated hierarchical clustering [Seo and Shnei-
derman 02, Seo and Shneiderman 05]. The PivotGraph system
summarizes networks using the succinct data abstraction of a
derived network created by rolling up groups of nodes and links
into aggregate nodes based on two categorical attributes [Watten-
berg 06]. The InterRing system for tree exploration uses a space-
filling, radial layout with interaction built around a multifocus fo-
cus+context distortion [Yang et al. 02]. The Constellation system
supports browsing a complex multilevel linguistic network with
a layout that encodes query relevance with spatial position and
dynamic layering to avoid the perceptual impact of edge cross-
ings [Munzner 00,Munzner et al. 99].

15.2 Why Analyze Case Studies?

The ability to concisely describe existing systems gives you a firm
foundation for considering the full array of possibilities when you
generate new systems. These case studies illustrate how to use

341

342 15. Analysis Case Studies

the analysis framework presented in the book to decompose a vis
approach, however complex, into pieces that you can systemati-
cally think about and compare with other approaches. These ex-
amples continue the analysis gradually introduced in the previous
chapters. Now that all design choices have been introduced, each
example has a complete analysis.

At the abstraction level, these analyses include the types and
semantics of the data abstraction including any derived data and
the targeted task abstraction. At the idiom level, the choices are
decomposed into the design choices of how to encode data, facet
data between multiple views, and reduce the data shown within
a view. The analyses also include a discussion of scalability and
continue with the practice of assuming available screen space of
one million pixels in a standard format of 1000 by 1000 pixels.

A few of these systems have simple data abstractions and can
be unambiguously classified as handling a particular simple data-
set type: tables, or networks, or spatial data. Most of them have
more complex data abstractions, which is the common case in real-
world problems. Many of these systems carry out significant trans-
formations of the original data to create derived data and handle
combinations of multiple basic types. Often the system is designed
to support exploration of interesting structure at multiple levels.

The following analyses are descriptive examinations of the fi-
nal design of each system, not prescriptive statements that the
particular choices made by these designers are the only good solu-
tion that fits the requirements. As you read through this chapter,
it is a useful exercise to generate a set of alternatives for each
choice made by these designers and to consider the pros and cons
of each.

15.3 Graph-Theoretic Scagnostics

Graph-theoretic scagnostics is a scalable idiom for the exploration
of scatterplot matrices, or SPLOMs [Wilkinson et al. 05,Wilkinson
et al. 06]. A scagnostics SPLOM is a next step beyond a stan-
dard SPLOM, just as a SPLOM is a step beyond a single scatter-
plot. A single scatterplot supports direct comparison between two
attributes by plotting their values along two spatial axes. A scat-

" Scatterplots are dis-
cussed in Section 7.4.

terplot matrix is the systematic way to compare all possible pairs of
attributes, with the attributes ordered along both the rows and the
columns and one scatterplot at each cell of the matrix. Figure 15.2

" SPLOMs are an example
of the design choice of ma-
trix alignments, discussed
in Section 7.5.2, and small
multiples, discussed in Sec-
tion 12.3.2. shows a SPLOM for a dataset of abalone measurements that has

nine attributes.

15.3. Graph-Theoretic Scagnostics 343

Figure 15.2. Scatterplot matrices (SPLOM) showing abalone data. From [Wilkinson et al. 05, Figure 1].

344 15. Analysis Case Studies

The scalability challenge of a SPLOM is that the size of the
matrix grows quadratically. Each individual plot requires enough
screen space to distinguish the points within it, so this idiom does
not scale well past a few dozen attributes.

The idea of scagnostics, short for scatterplot computer-guided
diagnostics, is to identify a small number of measurements that
nicely categorize the shape of the point distributions within each
scatterplot. The nine measures are outlying for outlier detection;
skewed, clumpy, sparse, and striated for point distribution and
density; convex, skinny, and stringy for shape, and monotonic for
the association. Figure 15.3 shows examples of real-world data-
sets rated low, medium, and high with respect to each of these
measures.

These measurements are then shown in a new scagnostics
SPLOM that is a scatterplot of scatterplots. That is, each point
in the scagnostics SPLOM represents an entire scatterplot in the
original SPLOM, which is shown when the point is selected. Fig-
ure 15.4 shows the scagnostics matrix for the abalone dataset. As
with standard SPLOMs, there is linked highlighting between views,
and selecting a point also triggers a popup detail view showing the
full scatterplot.

The idea is that the distribution of points in the scagnostics
SPLOM should provide a fast overview of the most important char-
acteristics of the original SPLOM, because the measures have been
carefully chosen to reflect scatterplot shape. Looking at the out-
liers in this scagnostics SPLOM guides the user to the unusually
shaped, and thus potentially interesting, scatterplots in the origi-
nal SPLOM.

System Scagnostics
What: Data Table.

What: Derived Nine quantitative attributes per scatterplot
(pairwise combination of original attributes).

Why: Tasks Identify, compare, and summarize; distributions
and correlation.

How: Encode Scatterplot, scatterplot matrix.

How: Manipulate Select.

How: Facet Juxtaposed small-multiple views coordinated
with linked highlighting, popup detail view.

Scale Original attributes: dozens.

15.3. Graph-Theoretic Scagnostics 345

Figure 15.3. The nine scagnostics measures that describe scatterplot shape, with
examples of real-world datasets rated low, medium, and high for each of the nine
measures. From [Wilkinson and Wills 08, Figure 6].

346 15. Analysis Case Studies

Figure 15.4. Scagnostics SPLOM for the abalone dataset, where each point represents an entire scatterplot in the
original matrix. The selected point is highlighed in red in each view, and the scatterplot corresponding to it is shown
in a popup detail view. From [Wilkinson et al. 05, Figure 5].

15.4. VisDB 347

15.4 VisDB

The VisDB system for database vis [Keim and Kriegel 94] treats an
entire database as a very large table of data. The system shows
that table with respect to a specific query that matches some sub-
set of the items in it. VisDB computes a set of derived attributes
that measure the relevance of the query with respect to the orig-
inal attributes and items, as shown in Figure 15.5(a). Each item
is given a relevance score for the query for each original attribute.
An overall relevance score is computed that combines these indi-
vidual scores, adding an additional derived attribute column to the
original table.

VisDB supports two different layout idioms that are dense, space-
filling, and use square color-coded area marks. Figure 15.5 shows
schematic views of the layouts, and Figure 15.6 shows the corre-
sponding screenshots.

The spatial ordering of regions within VisDB views is not a stan-
dard aligned rectilinear or radial layout; it follows a spiral pattern
emanating from the center, as shown in Figure 15.7(a). The se-
quential colormap, shown in Figure 15.7(b), uses multiple hues
ordered with monotonically increasing luminance to support both
categorical and ordered perception of the encoded data. At the
bottom is dark red, the mid-range has purple and blue, it con-
tinues with cyan and then even brighter green, and there is a
very bright yellow at the high end to emphasize the top of the
range.

One of the two layouts partitions the dataset by attribute into
small multiple views shown side by side, with one view for each
attribute. Figure 15.5(a) illustrates the idiom schematically, and
Figure 15.6(a) shows an example with a dataset of 1000 items.
The items are placed in the same order across all views but colored
according to relevance score for that view’s attribute. They are or-
dered by the derived overall relevance attribute, which is also the
coloring attribute in the upper left view; spatial position and color
provide redundant information in this view. In the other views with
coloring by each other attribute, there are different visual patterns
of color. The user can inspect the patterns within the individual
views to carry out the abstract task of characterizing distributions
and finding groups of similar values within individual attributes
and per-attribute outlier detection. Comparing between the pat-
terns in different views corresponds to the abstract task of looking
for correlations between attributes.

348 15. Analysis Case Studies

relevance factor dimension 1 dimension 2

dimension 3 dimension 4 dimension 5

one data item
fulfilling the
query

one data item
approximately
fulfilling the
query

(a)

relevance
dim. 1 dim. 2

dim. 3 dim. 4 dim. 5

factor

(b)

Figure 15.5. VisDB layouts schematically, for a dataset with five attributes.
(a) Each attribute is shown in a separate small-multiple view. (b) In an alternate
VisDB layout, each item is shown with a glyph with per-attribute sections in a single
combined view. From [Keim and Kriegel 94, Figures 2 and 4].

The second layout uses a single view where the space has been
partitioned into one region for each item, containing a glyph that
shows all of the attributes for that item. Figure 15.5(b) shows
the schematic diagram, and Figure 15.6(b) shows a screenshot.
This item-based partition supports the abstract task of compari-
son across items and finding groups of similar items, rather than
comparison across attributes.

15.4. VisDB 349

(a) (b)

Figure 15.6. VisDB screenshots with a dataset of eight attributes and 1000 items. (a) Attribute-based grouping with
one small-multiple view for each attribute. (b) Item-based grouping has a single combined view with multiattribute
glyph. From [Keim and Kriegel 94, Figure 6].

Both of these layouts use filtering for data reduction. When the
number of items is greater than the available room for the view,
items are filtered according to the relevance values. The total table
size handled by the system thus can be up to several million, even
though only one million items can be shown at once in a single
screen of one million pixels.

The small-multiples layout is effective for up to 10–12 attributes,
where each per-attribute view shows around 100,000 items, and
one million items are shown across all the views. In contrast, the
layout idiom using a single large glyph-based view only can handle
up to around 100,000 visible items, an order of magnitude fewer
than the other idiom. The elements within the glyph need to be
boxes larger than a single pixel in order to be salient, and glyphs
need borders around them in order to be distinguished from neigh-
boring ones.

VisDB is an early example of a very information-dense design
that tests the upper limits of useful information density. It is also a
very clear example of how different strategies for partitioning space
can be used to support different tasks.

350 15. Analysis Case Studies

(a) (b)

Figure 15.7. VisDB layout orientation and colors. (a) Layouts are are ordered
internally in a spiral emanating from the center. (b) The VisDB sequential color-
map uses multiple hues with monotonically increasing luminance. From [Keim and
Kriegel 94, Figures 2 and 3].

System VisDB
What: Data Table (database) with k attributes; query return-

ing table subset (database query).
What: Derived k + 1 quantitative attributes per original item:

query relevance for the k original attributes plus
overall relevance.

Why: Tasks Characterize distribution within attribute, find
groups of similar values within attribute, find
outliers within attribute, find correlation be-
tween attributes, find similar items.

How: Encode Dense, space-filling; area marks in spiral lay-
out; colormap: categorical hues and ordered
luminance.

How: Facet Layout 1: partition by attribute into per-attribute
views, small multiples. Layout 2: partition by
items into per-item glyphs.

How: Reduce Filtering

Scale Attributes: one dozen. Total items: several mil-
lion. Visible items (using multiple views, in to-
tal): one million. Visible items (using glyphs):
100,000

15.5. Hierarchical Clustering Explorer 351

15.5 Hierarchical Clustering Explorer

The Hierarchical Clustering Explorer (HCE) system supports sys-
tematic exploration of a multidimensional table with an associated
hierarchical clustering [Seo and Shneiderman 02, Seo and Shnei-
derman 05]. It was originally designed for the genomics domain
where the table reprents microarray measurements of gene expres-
sion. The original data is a multidimensional table with two key
attributes, genes and experimental conditions, and a single quan-
titative value attribute, measurements of the activity of each gene
under each experimental condition. The derived data is a clus-
ter hierarchy of the items based on a similarity measure bewteen
items.1

HCE is a good example of achieving scalability through carefully
designed combination of visual encoding and interaction idioms
in order to support datasets much larger than could be handled
by a single static view. The scalability target of HCE is between
100 and 20,000 gene attributes and between 2 and 80 experimen-
tal condition attributes. This target is reached with the reduc-
tion design choices of interactively controlled aggregation, filtering,
and navigation, and with the view coordination design choices of
overview–detail, small multiple, and multiform side-by-side views
with linked highlighting.

Figure 15.8 shows HCE on a genomics dataset. Two cluster
heatmap views are coordinated with the overview–detail design
choice, and scatterplot and histogram views provide different en-
codings.

" For more on cluster heat-
maps, see Section 7.5.2.

The overview cluster heatmap at the top uses an aggregated rep-
resentation where an entire dataset of 3614 genes is shown with
fewer than 1500 pixels by replacing individual leaves with the av-
erage values of adjacent leaves. The density level of the overview
can be interactively changed by the user, for a tradeoff between an
aggregate view where some detail is lost but the entire display is
visible at once, and a more zoomed-in view where only some of the
columns are visible simultaneously and navigation by horizontal
panning is required to see the rest. The horizontal line through
the dendrogram labeled Minimum Similarity is an interactive filter-
ing control. Dragging it down vertically dynamically filters out the
columns in the heatmap that correspond to the parts of the den-

1The clustering is computed outside the tool itself and is expected as input to
the system; for the purposes of this decompositional analysis, I consider it derived
rather than original data.

352 15. Analysis Case Studies

Figure 15.8. Hierachical Clustering Explorer uses interactive aggregation and filtering for the scalable display of a
multidimensional table showing gene activity in different conditions using multiple overview+detail cluster heatmap
views. From [Seo and Shneiderman 02, Figure 2].

drogram above the bar and partitions the heatmap into pieces that
correspond to the number of clusters just below the bar.

The detail view at the bottom shows a heatmap of the cluster
selected in the top overview. It also shows the second dendrogram
for hierarchical clustering of the rows on the side; this dendro-
gram is not shown above in order to to maximize the number of
columns that can fit within the overview. The background of the

15.5. Hierarchical Clustering Explorer 353

Figure 15.9. HCE on a demographics dataset showing the rank-by-feature idiom for systematic exploration of
pairwise combinations of attributes using a matrix overview and scatterplot. From [Seo and Shneiderman 05,
Figure 1].

selected cluster is highlighted in yellow in the overview, and the
correspondence between the views is emphasized by coloring the
column labels along the top of the detail view yellow as well, for
linked highlighting.

HCE has also been used for exploring datasets from other do-
mains, including census demographic information, as shown in
Figure 15.9. This screenshot focuses on the rank-by-feature id-
iom that combines the design choice of changing the order and the
reduction design choice of aggregation to guide exploration and
achieve scalability. In this idiom, the data abstraction is aug-
mented with many new derived attributes. Orderings for each
original attribute and pairwise combination of attributes are com-
puted for several choices of ordering criteria, and the user can
select which of them to use.⋆

⋆ Mapping the name of
this idiom into the vocabu-
lary used in this book, rank
is used as a synonym for
order, and feature means
either attribute or attribute
pair.

354 15. Analysis Case Studies

Figure 15.10. Detail of HCE rank-by-feature views for ranking individual attributes
using a list overview and histogram/boxplot. From [Seo and Shneiderman 05,
Figure 2].

The results appear in three views, as shown at the bottom of
Figure 15.9 and in the detail screenshot in Figure 15.10. The lower
left of Figure 15.9 shows an aggregate compact view with the same
matrix alignment as a SPLOM, where each cell of the matrix has
only a single area mark colored by the chosen criterion with a di-
verging blue–white–brown colormap. On the left of Figure 15.10
is a compact aggregate overview display with list alignment that
matches the ordering used in the cluster heatmap, with the same
area mark coloring. In the middle of Figure 15.10 is an interme-
diate level of detail view for all attributes that shows them in a list
alignment that is both ordered and colored by the criterion. This
list is less compact, showing a middle level of detail for each at-
tribute, and thus it supports navigation through scrolling. On the
right is a detail view to show the full details for the selected at-
tribute with a histogram as shown in Figure 15.10, or the selected
attribute pair with a scatterplot as shown in Figure 15.9. The user
can select by clicking on a cell in the list or matrix views or by flip-
ping through alternatives quickly using the single or double sliders
in the respective detail views.⋆

⋆ Although the slider in the
Figure 15.10 screenshot is
labeled Item Slider, in my
vocabulary it is being used
to choose which attribute to
display in the detail view.

System Hierarchical Clustering Explorer (HCE)
What: Data Multidimensional table: two categorical key at-

tributes (genes, conditions); one quantitative
value attribute (gene activity level in condition).

15.6. PivotGraph 355

What: Derived Hierarchical clustering of table rows and
columns (for cluster heatmap); quantitative de-
rived attributes for each attribute and pairwise
attribute combination; quantitative derived at-
tribute for each ranking criterion and original at-
tribute combination.

Why: Tasks Find correlation between attributes; find clus-
ters, gaps, outliers, trends within items.

How: Encode Cluster heatmap, scatterplots, histograms, box-
plots. Rank-by-feature overviews: continuous
diverging colormaps on area marks in reorder-
able 2D matrix or 1D list alignment.

How: Reduce Dynamic filtering; dynamic aggregation.

How: Manipulate Navigate with pan/scroll.

How: Facet Multiform with linked highlighting and shared
spatial position; overview–detail with selection
in overview populating detail view.

Scale Genes (key attribute): 20,000. Conditions
(key attribute): 80. Gene activity in condition
(quantitative value attribute): 20,000 × 80 =
1,600,000.

15.6 PivotGraph
Connection, containment, and matrix views of networks are dif-
ferent visual encodings of the same data abstraction; they both
depict the link structure of a network. In contrast, the PivotGraph
idiom [Wattenberg 06] visually encodes a different data abstrac-
tion: a new network derived from the original one by aggregating
groups of nodes and links into a roll-up according to categorical
attribute values on the nodes. The user can also select attributes
of interest that filter the derived network. Roll-ups can be made
for up to two attributes at once; for two dimensions nodes are laid
out on a grid, and for one dimension they are laid out on a line.
Node positions in the grid are computed to minimize link-crossing
clutter, and the links between them are drawn as curves. The user
interactively explores the graph through roll-up and selection to
see visual encodings that directly summarize the high-level rela-
tionships between the attribute-based groups and can drill down
to see more details for any node or link on demand. When the
user chooses a different roll-up, an animated transition smoothly
interpolates between the two layouts.

356 15. Analysis Case Studies

(a) (b)

Figure 15.11. The PivotGraph idiom. (a) Node–link view of small network with
two attributes on nodes: gender (M/F) is encoded by node shape, and company
division (1/2) is encoded by grayscale value. (b) The schematic PivotGraph roll-up
of the same simple network where size of nodes and links of the derived graph
shows the number of items in these aggregated groups. From [Wattenberg 06,
Figure 4].

Figure 15.11 shows an example of a simple node–link drawing
in Figure 15.11(a) side by side with a PivotGraph roll-up in Fig-
ure 15.11(b). The network has two categorical attributes: gender,
shown with M for male and F for female, and company division,
shown with 1 or 2. In the node–link view, node shape represents
gender with squares for M and circles for F, and grayscale value
represents company division with black for 1 and gray for 2. The
full original network is shown, emphasizing its topological struc-
ture. In the PivotGraph view, the derived network has four nodes
that represent the four possible groups of the combination of these
two attributes: males in division 1 in the upper left, females in divi-
sion 1 in the upper right, males in division 2 on the lower left, and
females in division 2 on the lower right. The size of each of these
aggregate groups is encoded with node size. Similarly, a single link
in this derived graph represents the entire group of edges in the
original graph that linked items in these groups, and the size of
that group is encoded with line width. In this example, all possible
gender/division pairs are connected except for men and women in
division 2.

Figure 15.12 shows a more complex example rolled up by gen-
der and office locations; the dataset is an anonymized version of
a real corporate social network. Most of the cross-gender commu-
nication occurs in location B, and there are no women at location
A. An additional quantitative attribute is encoded with a diverging

15.6. PivotGraph 357

Figure 15.12. PivotGraph on graph rolled up by gender and location, showing most cross-gender communication
occurs in location B. From [Wattenberg 06, Figure 5].

red–green colormap, the number of inward links versus outward
links at each node.

The PivotGraph idiom is highly scalable because it summarizes
an arbitrarily large number of nodes and links in the original net-
work, easily handling from thousands to millions. The visual com-
plexity of the derived network layout depends only on the number
of attribute levels for the two attributes chosen for roll-up.

PivotGraph complements the standard approaches to network
layout, node–link and matrix views, and thus could serve as one
of several linked multiform views in addition to being used on its

358 15. Analysis Case Studies

own as a single view. PivotGraph is very well suited for the task of
" Section 9.4 compares the
strengths and weaknesses
of the standard approaches
to network layout.

comparisons across attributes at the aggregate level, a task that is
difficult with previous approaches. Conversely, it is poorly suited
for understanding topological features of networks, a task that is
easy with node–link views when the network is not too large.

Idiom PivotGraph
What: Data Network.

What: Derived Derived network of aggregate nodes and links
by roll-up into two chosen attributes.

Why: Tasks Cross-attribute comparison of node groups.

How: Encode Nodes linked with connection marks, size.

How: Manipulate Change: animated transitions.

How: Reduce Aggregation, filtering.

Scale Nodes/links in original network: unlimited. Roll-
up attributes: 2. Levels per roll-up attribute:
several, up to one dozen.

15.7 InterRing
The InterRing system [Yang et al. 02] for tree exploration uses a
space-filling, radial layout for visually encoding the hierarchy. The
interaction is built around a multifocus focus+context distortion
approach to change the amount of room allocated to different parts
of the hierarchy. Figure 15.13(a) shows the undisorted base layout.
Figure 15.13(b) shows that the result of enlarging the blue sub-
tree is shrinking the room allocated to its siblings. Figure 15.13(c)
shows a subsequent use of interactive distortion, where the tan
region is also enlarged for emphasis.

The proposed structure-based coloring redundantly emphasizes
the hierarchical information encoded spatially. Structure-based
coloring could be eliminated if InterRing is used as the only view,
in order to show a different attribute with color coding. Structure-
based coloring is particularly useful when shared color coding is
used to coordinate between multiple views, so that items are col-
ored by the tree hierarchy in other linked views with different spa-
tial layouts.

The scalability of InterRing is moderate; it handles hundreds
of nodes easily, where the leaf labels are large enough to read.
The space-filling geometric configuration yields about three times

15.7. InterRing 359

(a) (b) (c)

Figure 15.13. The InterRing hierarchy vis idiom uses a space-filling radial visual encoding and distortion-based
focus+context interaction. (a) The hierarchy before distortion. (b) The blue selected subtree is enlarged. (c) A
second tan region is enlarged. From [Yang et al. 02, Figure 4].

as many legible labels as with a classical node–link layout using
labels of the same size. In the extreme case, where each leaf is
encoded with a single pixel and the idiom uses the entire screen,
InterRing could scale to several thousand nodes. The number of
edges in a tree is the same as the number of nodes, so there is no
need to separately analyze that aspect. Another useful factor to
consider with trees is the maximum tree depth supported by the
encoding; that is, the number of levels between the root and the
farthest away leaves. InterRing can handle up to several dozen
levels, whereas hundreds would be overwhelming.

In addition to being a viable single-view approach when tree ex-
ploration is the only task, InterRing is designed to work well with
other views where a hierarchy view should support selection, navi-
gation, and roll-up/drill-down operations. It also supports directly
editing the hierarchy itself. In contrast, many tree browsing sys-
tems do not support modification of the hierarchy.

System InterRing
What: Data Tree.

Why: Tasks Selection, rollup/drilldown, hierarchy editing.

How: Encode Radial, space-filling layout. Color by tree struc-
ture.

How: Facet Linked coloring and highlighting.

How: Reduce Embed: distort; multiple foci.

Scale Nodes: hundreds if labeled, thousands if
dense. Levels in tree: dozens.

360 15. Analysis Case Studies

15.8 Constellation

The Constellation system [Munzner 00,Munzner et al. 99] supports
browsing a complex multilevel linguistic network. Several of the vi-
sual encoding decisions diverge from the traditional node–link net-
work layout. The perceptual impact of edge crossings is minimized
by using dynamic highlighting of a foreground layer rather than
by an algorithm to minimize crossings, allowing the use of spa-
tial position to encode two ordered attributes. Nodes in the graph
that have links to multiple subgraphs are duplicated within each
to maximize readability at the subgraph level. The traditional ap-
proach of drawing a node in only one location would increase the
cognitive load of understanding subgraph structure by requiring
too much tracing back and forth along links; the duplication is
signalled by dynamic highlighting on hover.

Constellation is an example of a highly specialized vis tool de-
signed for a very small audience to use for a limited period of time.
It was intended to support computational linguistics researchers
who were developing algorithms for traversing a very large network
created from an online dictionary. The tool was intended to “work
itself out of a job” and be abandoned after their algorithms were
fully tuned.

In this multilevel network, a low-level node represents a word
sense: the narrow meaning of a word used in a particular way,
where most words have multiple senses. For example, bank has
the two distinct meanings of a financial institution and the side of
a river. The metanodes at the next level of the graph each con-
tain a subgraph of around 10–12 nodes representing a dictionary
definition, with links between the headword node being defined,
and all of the leafword nodes used in the defining sentence. The
large-scale structure of the network arises from combining these
subgraphs together, since the same word may be used in many
different definitions: as a headword in one definition, and as leaf-
words in several others.

There is a categorical attribute for the relationship encoded by
each link, such as is-a or part-of. While there are in total a few
dozen possible values for this type, most are rarely used; we binned
this attribute into eight bins, preserving the seven most frequently
used types and combining all others into an eighth other category.

The linguistics researchers did not need to inspect the full net-
work; rather, they wanted to see the results of their query algo-
rithms that traversed the network, returning an ordered set of the

15.8. Constellation 361

Figure 15.14. The Constellation high-level layout bases horizontal spatial posi-
tion on the plausibility attribute, where more room is allocated to definitions on
highly plausible and usually short paths on the left, and less room to those on less
plausible and typically longer paths on the right. From [Munzner 00, Figure 5.4].

top 10 or 50 highest-ranking paths between two words, a source
and a sink. The paths are ranked with the quantitative attribute of
plausibility, as computed by their traversal algorithms. Each path
consists of an ordered list of words, and attached to each of these
words is the set of all the definitions that were used during the
computation to place it within the path.

The primary task of the linguists was to hand-check the results
to see how well the computed plausibility matched up to their hu-
man intuition: were all high-ranking paths believable, and con-
versely were all believable paths highly ranked? The secondary
task was to check the data quality, to ensure that extremely com-
mon stop words had been appropriately excluded from the compu-
tation. The task abstraction is the consume-discover case, where
the search requirements include both browsing the high-ranking
paths and locating the low-belivability paths, and the querying
requirements include both identification and comparison. All of
these tasks require extensive reading of node labels.

362 15. Analysis Case Studies

The high-level Constellation spatial layout is based on a curvi-
linear grid, where each path flows along a vertical column with the
words ordered from the source on top to the sink on the bottom,
and the horizontal order of the paths is determined by the plau-
sibility attribute with highly plausible ones on the left. The lay-
out is designed so that definitions on the plausible left side have
more room than those on the implausible right side, as shown
in Figure 15.14. Paths have different lengths, and less plausible
ones tend to be longer and have more definitions associated with
each word. Paths on the implausible right are given less horizontal
space. This variability leads to many empty cells in the base grid
shown in Figure 15.15(a); full cells are expanded both horizontally
as in Figure 15.15(b) and vertically as in Figure 15.15(c) to fill the
available space and achieve high information density.

The choice to use spatial position to encode information pre-
cludes algorithmic approaches to minimizing edge crossings. In-
stead, Constellation uses the design choice of superimposed dy-
namic layers to minimize the perceptual impact of crossings. Fig-
ure 15.16(a) shows an example of the background version of a def-
inition graph, while Figure 15.16(b) shows the foreground version.
Four different kinds of structures can be highlighted to create dif-
ferent constellations, motivating the system’s name: paths, defini-
tion graphs, all of the direct connections to a single word, and all
links of a particular type. Figure 15.17 shows a constellation with
all links of type Part highlighted. It also illustrates the “sideways T”
layout characteristic of a query where the source and sink words
are highly related, so all of the high-ranking paths are very short;
in this case, aspirin and headache.

The mid-level spatial layout handles a path segment: one word
in the path along with all of the definitions associated with it, us-
ing containment marks to show the hierarchical relationships. Fig-
ure 15.18(a) shows an example where the box allocated to the en-
tire segment is tan, and the path word has its own definition that
is also drawn in the tan section. Figure 15.18(b) shows an exam-
ple where the path word itself is not defined, but each of the other
definitions assigned to it is enclosed in a green box nested within
the tan segment.

The low-level spatial layout of a definition is illustrated in Fig-
ure 15.19(a). A ladder-like rectilinear structure encodes with both
spatial position and line marks. Each leafword is enclosed in
its own blue label box. Vertical lines show the hierarchical mi-
crostructure inside the definition and are colored white, and hori-
zontal edges are color coded to show the link type.

15.8. Constellation 363

(a) (b)

(c)

Figure 15.15. Resizing grid cells to increase information density. (a) Base curvilinear grid. (b) After eliminating the
empty columns. (c) After eliminating empty cell rows in each column. From [Munzner 00, Figure 5.13].

364 15. Analysis Case Studies

(a) (b)

Figure 15.16. Constellation uses the design choice of dynamic superimposed layers. (a) Edges in the background
layer are not obtrusive. (b) The newly selected foreground layer is distinguished from the background with changes
of the size, luminance, and saturation channels. From [Munzner 00, Figure 5.5].

Figure 15.17. The constellation showing all relations of type Part is highlighted.
From [Munzner 00, Figure 5.16a].

15.8. Constellation 365

(a) (b)

Figure 15.18. Mid-level Constellation path segment
layout, using containment to show hierarchical rela-
tionship between path word in tan and its associated
definitions in green. (a) One of the definitions is for
the path word itself. (b) Path word that is not it-
self defined, but only appears within other definitions.
From [Munzner 00, Figure 5.9].

(a) (b)

Figure 15.19. Low-level Constellation definition
layout, using rectilinear links and spatial position.
(a) The base layout, with horizontal lines color-coded
for link type. (b) Long-distance links are drawn be-
tween the master version of the word and all of its
duplicated proxies. From [Munzner 00, Figure 5.10].

Each definition is drawn with all of its associated words in or-
der to make it easy to read, so any word that appears in multiple
definitions is duplicated. The master version of the word is the
one on the most plausible path, and is drawn in black. All sub-
sequent instances are proxies, which are drawn in gray and are
connected to the master by a long slanted line mark, as shown in
Figure 15.19(b).

Constellation is optimized for three different viewing levels: a
global view for interpath relationships, a local view for reading
individual definitions, and an intermediate view for associations
within path segments. It uses a subtle form of semantic zooming
to achieve this effect, where the amount of space devoted to differ-
ent classes of words changes dynamically depending on the zoom
level. Figure 15.20 shows three steps of a zoom animated transi-
tion sequence. In the first frame, the words at the top are given
much more space than the rest; in the last frame, the allocation of
space is nearly equal for all words.

366 15. Analysis Case Studies

Figure 15.20. Constellation uses a subtle version of the semantic zooming design
choice, where the space allocated for the first word versus the rest of the definition
changes according to the zoom level. From [Munzner 00, Figure 5.19].

System Constellation
What: Data Three-level network of paths, subgraphs (defi-

nitions), and nodes (word senses).
Why: Tasks Discover/verify: browse and locate types of

paths, identify and compare.
How: Encode Containment and connection link marks, hori-

zontal spatial position for plausibility attribute,
vertical spatial position for order within path,
color links by type.

How: Manipulate Navigate: semantic zooming. Change: Ani-
mated transitions.

How: Reduce Superimpose dynamic layers.

Scale Paths: 10–50. Subgraphs: 1–30 per path.
Nodes: several thousand.

15.9 Further Reading
Graph-Theoretic Scagnostics Scagnostics builds on ideas originally pro-

posed by statisticians John and Paul Tukey [Wilkinson et al. 05,
Wilkinson and Wills 08].

15.9. Further Reading 367

VisDB The VisDB system was an early proposal of dense displays
for multidimensional tables [Keim and Kriegel 94].

Hierarchical Clustering Explorer Different aspects of the Hierarchical
Clustering Explorer system are described in a series of pa-
pers [Seo and Shneiderman 02,Seo and Shneiderman 05].

PivotGraph The PivotGraph system visually encodes a different de-
rived data abstraction than most network vis idioms [Watten-
berg 06].

InterRing The InterRing system supports hierarchy exploration
through focus+context interaction with geometric distortion
and multiple foci. [Yang et al. 02].

Constellation The Constellation system supports browsing a complex
multilevel network with a specialized layout and dynamic lay-
ering [Munzner et al. 99,Munzner 00].

This page intentionally left blankThis page intentionally left blank

Figure Credits

Any figures not listed here are released under the Creative Commons Attribution 4.0 International license
(CC BY 4.0), to be credited as Tamara Munzner, with illustrations by Eamonn Maguire, Visualization
Analysis and Design, A K Peters Visualization Series, CRC Press, Boca Raton, FL, 2014.

Figure 1.1 Copyright c⃝ 2013 by IEEE.

Figure 1.2 Reproduced under Creative Commons Attribution Non-Commercial license (CC BY-NC
2.0).

Figure 1.4 Copyright c⃝ 2007 by IEEE.

Figure 1.5 Courtesy of Miriah Meyer.

Figure 1.6 Michael J. McGuffin and Jean-Marc Robert, Information Visualization (9:2) pp. 115-140,
copyright c⃝ 2010 by SAGE Publications. Reprinted by Permission of SAGE.

Figure 2.5 Courtesy of Miriah Meyer.

Figure 2.9 Courtesy of Miriah Meyer.

Figure 3.4 Copyright c⃝ 2008 by IEEE.

Figure 3.8(a) Courtesy of Catherine Plaisant.

Figure 3.8(b) [Munzner et al. 03] c⃝ 2003 Association for Computing Machinery, Inc. Reprinted by
permission.

Figure 3.10 Courtesy of David Auber.

Figure 3.12 Copyright c⃝ 1998 by IEEE.

Figure 4.3 Copyright c⃝ 2008 by IEEE.

Figure 4.6 Copyright c⃝ 2005 by IEEE.

Figure 4.8 Copyright c⃝ 2006 by IEEE.

Figure 4.10 Copyright c⃝ 2005 by IEEE.

Figure 4.12 [McLachlan et al. 08] c⃝ 2008 Association for Computing Machinery, Inc. Reprinted by
permission.

Figure 4.14 Springer, Graph Drawing, Lecture Notes in Computer Science, 2912, 2004, pages 425-
436, “An Energy Model for Visual Graph Clustering,” Andreas Noack, Figure 1, copyright
c⃝ 2004 Springer. With kind permission from Springer Science and Business Media.
Original caption: Pseudo-random graph with intra-cluster edge probability 0.16 and inter-
cluster edge probability 0.02; left: LinLog model.

369

370 Figure Credits

Figure 4.16 [Heer et al. 09] c⃝ 2010 Association for Computing Machinery, Inc. Reprinted by permis-
sion.

Figure 5.8 [Heer and Bostock 10] c⃝ 2010 Association for Computing Machinery, Inc. Reprinted by
permission.

Figure 5.9 Courtesy of TeleGeography, www.telegeography.com.

Figure 5.14 Courtesy of Edward H. Adelson. c⃝ 1995 Edward H. Adelson.

Figure 5.15 Courtesy of Dale Purves, http://www.purveslab.net/seeforyourself.

Figure 6.3 Copyright c⃝ 1996 by IEEE.

Figure 6.4 Courtesy of Stephen Few. An example of poor design, from http://perceptualedge.com/
files/GraphDesignIQ.html.

Figure 6.5 Copyright c⃝ 1996 by IEEE.

Figure 6.6 Copyright c⃝ 2007 by IEEE.

Figure 6.7 Copyright c⃝ 1999 by IEEE.

Figure 6.8 Copyright c⃝ 2010 by IEEE.

Figure 6.9 Copyright c⃝ 2007 by IEEE.

Figure 7.2 Copyright c⃝ 2008 by IEEE.

Figure 7.3 “A layered grammar of graphics,” Hadley Wickham, Journal of Computational and Graphical
Statistics 19:1 (2010), 3-28. Reprinted by permission of the American Statistical Associa-
tion (http://www.amstat.org).

Figure 7.5 Courtesy of Robert P. Bosch, Jr.

Figure 7.6 Copyright c⃝ 2008 by IEEE.

Figure 7.7 Copyright c⃝ 2008 by IEEE.

Figure 7.10 Copyright c⃝ 2006 by IEEE.

Figure 7.11 From http://en.wikipedia.org/wiki/File:Heatmap.png. Created by Miguel Andrade using
the program Cluster from Michael Eisen, which is available from http://rana.lbl.gov/
EisenSoftware.htm, with data extracted from the StemBase database of gene expression
data.

Figure 7.13 “Hyperdimensional Data Analysis Using Parallel Coordinates,” Edward J. Wegman, Journal
American Statistical Association 85:411 (1990), 664–675. Reprinted by permission of the
American Statistical Association (http://www.amstat.org).

Figure 7.14 Copyright c⃝ 1999 by IEEE.

Figure 7.15(a,b) “A layered grammar of graphics,” Hadley Wickham, Journal of Computational and Graph-
ical Statistics 19:1 (2010), 3-28. Reprinted by permission of the American Statistical Asso-
ciation (http://www.amstat.org).

Figure 7.17 “A layered grammar of graphics,” Hadley Wickham, Journal of Computational and Graphical
Statistics 19:1 (2010), 3-28. Reprinted by permission of the American Statistical Associa-
tion (http://www.amstat.org).

Figure Credits 371

Figure 7.18 Courtesy of Michael Bostock, made with D3 [Bostock et al. 11]. From http://bl.ocks.
org/mbostock/3887235, http://bl.ocks.org/mbostock/3886208, and http://bl.ocks.org/
mbostock/3886394.

Figure 7.19 Copyright c⃝ 2012 John Wiley & Sons, Ltd.

Figure 7.20 Courtesy of John Stasko.

Figure 8.2 Courtesy of Michael Bostock, made with D3 [Bostock et al. 11]. From http://bl.ocks.org/
mbostock/4060606.

Figure 8.3 Courtesy of Joe Kniss.

Figure 8.4 Courtesy of Land Information New Zealand Data Service (CC BY 3.0 NZ). From https://
data.linz.govt.nz/layer/768-nz-mainland-contours-topo-150k.

Figure 8.5 Copyright c⃝ 2004 by IEEE.

Figure 8.6 Copyright c⃝ 2004 by IEEE.

Figure 8.7 Copyright c⃝ 2005 by IEEE.

Figure 8.8 Reprinted from Computers and Graphics, Vol. 26, No. 2, Xavier Tricoche, Thomas Wis-
chgoll, Gerik Scheuermann, and Hans Hagen, “Topology tracking for the visualization of
time-dependent two-dimensional flows,” Pages 249–257, Copyright 2002, with permission
from Elsevier.

Figure 8.9 Copyright c⃝ 2013 by IEEE.

Figure 8.10 Copyright c⃝ 2005 by IEEE.

Figure 8.11 Courtesy of Gordon Kindlmann. From http://www.cs.utah.edu/∼gk/papers/vis99/ppt/
slide03.html.

Figure 8.12 Copyright c⃝ 2004 by IEEE.

Figure 8.13 Copyright c⃝ 2004 by IEEE.

Figure 9.2(a) Springer, Graph Drawing, Lecture Notes in Computer Graphics 2528, 2002, pages 344–
353, “Improving Walkers Algorithm to Run in Linear Time,” Christoph Buchheim, Michael
Junger, and Sebastien Leipert, Figure 2d, copyright c⃝ 2002 Springer. With kind permis-
sion from Springer Science and Business Media.
Original caption: Extending the Reingold-Tilford algorithm to trees of unbounded degree.

Figure 9.2(b) Courtesy of Michael Bostock, made with D3 [Bostock et al. 11]. From http://mbostock.
github.com/d3/ex/tree.html.

Figure 9.3 Courtesy of David Auber, made with Tulip [Auber et al. 12].

Figure 9.4 Courtesy of Michael Bostock, made with D3 [Bostock et al. 11]. From http://bl.ocks.org/
mbostock/4062045 and http://bl.ocks.org/1062288.

Figure 9.5 From “A Gallery of Large Graphs,” JDG Homologycis-n4c6, b14 and b4. Courtesy of Yifan
Hu; see http://yifanhu.net/GALLERY/GRAPHS/citation.html.

Figure 9.6 Reprinted by permission from Macmillan Publishers Ltd: Nature Methods [Gehlenborg and
Wong 12], copyright 2012.

372 Figure Credits

Figure 9.7 Courtesy of Michael McGuffin, from http://www.michaelmcguffin.com/courses/vis/
patternsInAdjacencyMatrix.png.

Figure 9.8 Courtesy of David Auber, made with Tulip [Auber et al. 12].

Figure 9.9 Michael J. McGuffin and Jean-Marc Robert, Information Visualization (9:2) pp. 115–140,
copyright c⃝ 2010 by SAGE Publications. Reprinted by Permission of SAGE.

Figure 9.10 Copyright c⃝ 2008 by IEEE.

Figure 10.8 Reproduced under Creative Commons Attribution license (CC BY 2.0).

Figure 10.9 Copyright c⃝ 2012 by IEEE.

Figure 10.10 Copyright c⃝ 2012 by IEEE.

Figure 10.11 Copyright c⃝ 1998 by IEEE.

Figure 10.12 Copyright c⃝ 1995 by IEEE.

Figure 10.13 Courtesy of Gordon Kindlmann, from http://www.cs.utah.edu/∼gk/lumFace.

Figure 11.2 Courtesy of Michael McGuffin, made using Tableau, http://tableausoftware.com.

Figure 11.3 Copyright c⃝ 2013 by IEEE.

Figure 11.4 Copyright c⃝ 2013 by IEEE.

Figure 11.5 Copyright c⃝ 2003 by IEEE.

Figure 11.6 Copyright c⃝ 2011 by IEEE.

Figure 11.7 [McLachlan et al. 08] c⃝ 2008 Association for Computing Machinery, Inc. Reprinted by
permission.

Figure 11.8 c⃝ 2008 Christian Rieder, Felix Ritter, Matthias Raspe, and Heinz-Otto Peitgen. Computer
Graphics Forum c⃝ 2008 The Eurographics Association and Blackwell Publishing Ltd.

Figure 11.9 Copyright c⃝ 1993 by IEEE.

Figure 12.2 Reproduced with permission from Graham Wills.

Figure 12.4 Copyright c⃝ 2003 by IEEE.

Figure 12.5 Copyright c⃝ 2008 by IEEE.

Figure 12.7 Reproduced under Creative Commons Attribution-ShareAlike 4.0 International license (CC
BY-SA 4.0); created by Chris Weaver of The University of Oklahoma, from http://www.cs.
ou.edu/∼weaver/improvise/examples/census.

Figure 12.8 Courtesy of Michael Bostock, made with D3 [Bostock et al. 11]. From http://bl.ocks.org/
mbostock/3887051, after http://bl.ocks.org/mbostock/4679202.

Figure 12.9 “The Visual Design and Control of Trellis Display,” Ronald A. Becker, William S. Cleveland,
and Ming-Jen Shyu, Journal of Computational and Statistical Graphics 5:2 (1996), 123–
155. Reprinted by permission of the American Statistical Association (http://www.amstat.
org).

Figure Credits 373

Figure 12.10 “The Visual Design and Control of Trellis Display,” Ronald A. Becker, William S. Cleveland,
and Ming-Jen Shyu, Journal of Computational and Statistical Graphics 5:2 (1996), 123–
155. Reprinted by permission of the American Statistical Association (http://www.amstat.
org).

Figure 12.11 Copyright c⃝ 2009 by IEEE.

Figure 12.12 Copyright c⃝ 2009 by IEEE.

Figure 12.13 From [Stone 10], courtesy of Maureen Stone; original color image by National Park Service,
http://www.nps.gov/pore/planyourvisit/upload/map pore areamap.pdf.

Figure 12.15 Copyright c⃝ 2010 by IEEE.

Figure 12.16 Copyright c⃝ 2006 by IEEE.

Figure 12.17 Reproduced under Creative Commons Attribution Non-Commercial license (CC BY-NC
2.0).

Figure 13.2 [Ahlberg and Shneiderman 94] c⃝ 1994 Association for Computing Machinery, Inc. Reprinted
by permission. Courtesy of Human-Computer Interaction Lab, University of Maryland.

Figure 13.3 Copyright c⃝ 2007 by IEEE.

Figure 13.4 Copyright c⃝ 2003 by IEEE.

Figure 13.6 Copyright c⃝ 2008 by IEEE.

Figure 13.7 “40 years of boxplots,” Hadley Wickham and Lisa Stryjewski, The American Statistician.
Reprinted by permission of the American Statistical Association (http://www.amstat.org).

Figure 13.8 Copyright c⃝ 1998 by IEEE.

Figure 13.9 Copyright c⃝ 1999 by IEEE.

Figure 13.10 Courtesy of Adrienne Gruver, Penn State Geography.

Figure 13.11 Copyright c⃝ 2007 by IEEE.

Figure 13.12 Copyright c⃝ 2009 by IEEE.

Figure 14.2 Copyright c⃝ 2004 by IEEE.

Figure 14.3 [Bier et al. 93] c⃝ 1993 Association for Computing Machinery, Inc. Reprinted by permis-
sion.

Figure 14.4 Copyright c⃝ 1997 by IEEE.

Figure 14.5 Courtesy of David Auber, made with Tulip [Auber et al. 12].

Figure 14.6 Copyright c⃝ 1998 by IEEE.

Figure 14.7 [Munzner et al. 03] c⃝ 2003 Association for Computing Machinery, Inc. Reprinted by
permission.

Figure 14.8 Copyright c⃝ 2006 by IEEE.

Figure 14.9 Copyright c⃝ 1998 by IEEE.

Figure 14.10 Copyright c⃝ 2010 by IEEE.

374 Figure Credits

Figure 15.2 Copyright c⃝ 2005 by IEEE.

Figure 15.3 “Scagnostics Distributions,” Leland Wilkinson and Graham Wills, Journal of Computational
and Graphical Statistics (JCGS) 17:2 (2008), 473–491. Reprinted by permission of the
American Statistical Association (http://www.amstat.org).

Figures 15.4 and 15.1(a) Copyright c⃝ 2005 by IEEE.

Figure 15.5 Copyright c⃝ 1994 by IEEE.

Figures 15.6 and 15.1(b) Copyright c⃝ 1994 by IEEE.

Figure 15.7 Copyright c⃝ 1994 by IEEE.

Figure 15.8 Copyright c⃝ 2002 by IEEE. Courtesy of Human-Computer Interaction Lab, University of
Maryland.

Figures 15.9 and 15.1(c) Copyright c⃝ 2005 by IEEE. Courtesy of Human-Computer Interaction Lab,
University of Maryland.

Figure 15.10 Copyright c⃝ 2005 by IEEE. Courtesy of Human-Computer Interaction Lab, University of
Maryland.

Figure 15.11 [Wattenberg 06] c⃝ 2006 Association for Computing Machinery, Inc. Reprinted by permis-
sion.

Figures 15.12 and 15.1(d) [Wattenberg 06] c⃝ 2006 Association for Computing Machinery, Inc. Reprinted
by permission.

Figures 15.13 and 15.1(e) Copyright c⃝ 2002 by IEEE.

Figure 15.14–15.20 and 15.1(f) From the PhD thesis of Tamara Munzner [Munzner 00].

Bibliography

[Ahlberg and Shneiderman 94] Chris Ahlberg and Ben Shneiderman. “Visual Information Seeking:
Tight Coupling of Dynamic Query Filters with Starfield Displays.” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI), pp. 313–317. ACM, 1994. DOI
10.1145/259963.260390. (pages 301, 302, 320, 373)

[Aigner et al. 11] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. Visual-
ization of Time-Oriented Data. Springer, 2011. (page 40)

[Amar et al. 05] Robert Amar, James Eagan, and John Stasko. “Low-Level Components of Analytic Activ-
ity in Information Visualization.” In Proceedings of the IEEE Symposium on Information Visualization
(InfoVis), pp. 111–117. IEEE Computer Society, 2005. (page 64)

[Andre and Wickens 95] Anthony D. Andre and Christopher D. Wickens. “When Users Want What’s Not
Best for Them.” Ergonomics in Design: The Quarterly of Human Factors Applications 3:4 (1995),
10–14. (page 129)

[Andrews 08] Keith Andrews. “Evaluation Comes in Many Guises.” AVI Workshop on BEyond time
and errors: novel evaLuation methods for Information Visualization (BELIV) Position Paper, 2008.
http://www.dis.uniroma1.it/beliv08/pospap/andrews.pdf. (page 79)

[Ankerst et al. 98] Michael Ankerst, Stefan Berchtold, and Daniel A. Keim. “Similarity Clustering of
Dimensions for an Enhanced Visualization of Multidimensional Data.” In Proceedings of the IEEE
Symposium on Information Visualization (InfoVis), pp. 52–60. IEEE Computer Society, 1998. (pages
305, 321)

[Anscombe 73] F.J. Anscombe. “Graphs in Statistical Analysis.” American Statistician 27 (1973), 17–21.
(pages 7, 8, 19)

[Archambault et al. 07a] Daniel Archambault, Tamara Munzner, and David Auber. “Grouse: Feature-
Based, Steerable Graph Hierarchy Exploration.” In Proceedings of the Eurographics/IEEE VGTC
Symposium on Visualization (EuroVis), pp. 67–74. Eurographics, 2007. (page 10)

[Archambault et al. 07b] Daniel Archambault, Tamara Munzner, and David Auber. “TopoLayout: Mul-
tilevel Graph Layout by Topological Features.” IEEE Transactions on Visualization and Computer
Graphics 13:2 (2007), 305–317. (page 216)

[Archambault et al. 08] Daniel Archambault, Tamara Munzner, and David Auber. “GrouseFlocks: Steer-
able Exploration of Graph Hierarchy Space.” IEEE Transactions on Visualization and Computer
Graphics 14:4 (2008), 900–913. (page 215)

375

376 Bibliography

[Auber et al. 12] David Auber, Daniel Archambault, Romain Bourqui, Antoine Lambert, Morgan Mathi-
aut, Patrick Mary, Maylis Delest, Jonathan Dubois, and Guy Melançon. “The Tulip 3 Framework:
A Scalable Software Library for Information Visualization Applications Based on Relational Data.”
Technical report, INRIA Research Report 7860, 2012. (pages 371, 372, 373)

[Auber 02] David Auber. “Using Strahler Numbers for Real Time Visual Exploration of Huge Graphs.”
Journal of WSCG (International Conference on Computer Vision and Graphics) 10:1–3 (2002), 56–69.
(pages 61, 61, 65)

[Bachthaler and Weiskopf 08] Sven Bachthaler and Daniel Weiskopf. “Continuous Scatterplots.” IEEE
Transactions on Visualization and Computer Graphics (Proc. Vis 08) 14:6 (2008), 1428–1435. (pages
307, 308)

[Baldonado et al. 00] Michelle Q. Wang Baldonado, Allison Woodruff, and Allan Kuchinsky. “Guidelines
for Using Multiple Views in Information Visualizations.” In Proceedings of the International Working
Conference on Advanced Visual Interfaces (AVI), pp. 110–119. ACM, 2000. (page 296)

[Barsky et al. 07] Aaron Barsky, Jennifer L. Gardy, Robert E. Hancock, and Tamara Munzner. “Cere-
bral: A Cytoscape Plugin for Layout of and Interaction with Biological Networks Using Subcellular
Localization Annotation.” Bioinformatics 23:8 (2007), 1040–1042. (pages 5, 6, 295)

[Barsky et al. 08] Aaron Barsky, Tamara Munzner, Jennifer Gardy, and Robert Kincaid. “Cerebral: Vi-
sualizing Multiple Experimental Conditions on a Graph with Biological Context.” IEEE Transactions
on Visualization and Computer Graphics (Proc. InfoVis 08) 14:6 (2008), 1253–1260. (pages 274, 275)

[Becker and Cleveland 87] Richard A. Becker and William S. Cleveland. “Brushing Scatterplots.” Tech-
nometrics 29 (1987), 127–142. (page 296)

[Becker et al. 96] Ronald A. Becker, William S. Cleveland, and Ming-Jen Shyu. “The Visual Design and
Control of Trellis Display.” Journal of Computational and Statistical Graphics 5:2 (1996), 123–155.
(pages 155, 282, 283, 284)

[Bederson and Hollan 94] Ben Bederson and James D Hollan. “Pad++: A Zooming Graphical Interface
for Exploring Alternate Interface Physics.” In Proceedings of the Symposium on User Interface Soft-
ware and Technology (UIST), pp. 17–26. ACM, 1994. (page 262)

[Bergman et al. 95] Lawrence D. Bergman, Bernice E. Rogowitz, and Lloyd A. Treinish. “A Rule-Based
Tool for Assisting Colormap Selection.” In Proceedings of the IEEE Conference on Visualization (Vis),
pp. 118–125. IEEE Computer Society, 1995. (pages 232, 240)

[Bertin 67] Jacques Bertin. Sémiologie Graphique: Les diagrammes—Les réseaux—Les cartes. Gauthier-
Villard, 1967. Reissued by Editions de l’Ecole des Hautes Etudes en Sciences in 1999. (pages 19,
114, 175)

[Bier et al. 93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose. “Tool-
glass and Magic Lenses: The See-Through Interface.” In Proceedings of the Annual Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 73–80. ACM, 1993. DOI
10.1145/166117.166126. (pages 326, 373)

[Booshehrian et al. 11] Maryam Booshehrian, Torsten Möller, Randall M. Peterman, and Tamara Mun-
zner. “Vismon: Facilitating Risk Assessment and Decision Making in Fisheries Management.” Tech-
nical report, School of Computing Science, Simon Fraser University, Technical Report TR 2011-04,
2011. (page 167)

Bibliography 377

[Borgo et al. 13] Rita Borgo, Johannes Kehrer, David H.S. Chung, Eamonn Maguire, Robert S. Laramee,
Helwig Hauser, Matthew Ward, and Min Chen. “Glyph-Based Visualization: Foundations, Design
Guidelines, Techniques and Applications.” In Eurographics State of the Art Reports, pp. 39–63.
Eurographics, 2013. (pages 115, 296)

[Borland and Taylor 07] David Borland and Russell M. Taylor, III. “Rainbow Color Map (Still) Considered
Harmful.” IEEE Computer Graphics and Applications 27:2 (2007), 14–17. (page 240)

[Bosch 01] Robert P. Bosch, Jr. “Using Visualization to Understand the Behavior of Computer Systems.”
Ph.D. thesis, Stanford University Department of Computer Science, 2001. (page 152)

[Bostock et al. 11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. “D3: Data-Driven Documents.”
IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 11) 17:12 (2011), 2301–
2309. (pages 371, 371, 371, 371, 372)

[Brandes 01] Ulrik Brandes. “Chapter 4, Drawing on Physical Analogies.” In Drawing Graphs: Methods
and Models, Lecture Notes in Computer Science, 2025, edited by M. Kaufmann and D. Wagner,
pp. 71–86. Springer, 2001. (page 216)

[Brehmer and Munzner 13] Matthew Brehmer and Tamara Munzner. “A Multi-Level Typology of Abstract
Visualization Tasks.” IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 13)
19:12 (2013), 2376–2385. (page 64)

[Brewer 99] Cynthia A. Brewer. “Color Use Guidelines for Data Representation.” In Proceedings of the
Section on Statistical Graphics, pp. 55–60. American Statistical Association, 1999. (pages 226, 240)

[Buchheim et al. 02] Christoph Buchheim, Michael Jünger, and Sebastien Leipert. “Improving Walker’s
Algorithm to Run in Linear Time.” In Proceedings of the International Symposium on Graph Drawing
(GD 02), Lecture Notes in Computer Science, 2528, pp. 344–353. Springer, 2002. (pages 201, 202)

[Byron and Wattenberg 08] Lee Byron and Martin Wattenberg. “Stacked Graphs Geometry & Aesthet-
ics.” IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 08) 14:6 (2008), 1245–
1252. (pages 153, 153, 154, 175)

[Cabral and Leedom 93] Brian Cabral and Leith Casey Leedom. “Imaging Vector Fields Using Line In-
tegral Convolution.” In Proceedings of the Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), pp. 263–270. ACM, 1993. (pages 193, 198)

[Card and Mackinlay 97] Stuart K. Card and Jock Mackinlay. “The Structure of the Information Visual-
ization Design Space.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis),
pp. 92–99. IEEE Computer Society, 1997. (page 40)

[Card and Mackinlay 99] Stuart K. Card and Jock D. Mackinlay. “The Structure of the Information
Visualization Design Space.” In Proceedings of the IEEE Symposium on Information Visualization
(InfoVis), pp. 92–99. IEEE Computer Society, 1999. (pages 175, 328)

[Card et al. 91] Stuart Card, George Robertson, and Jock Mackinlay. “The Information Visualizer, an
Information Workspace.” In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI), pp. 181–186. ACM, 1991. (pages 137, 142)

[Card et al. 99] Stuart K. Card, Jock Mackinlay, and Ben Shneiderman. Readings in Information Visual-
ization: Using Vision to Think. Morgan Kaufmann, 1999. (pages xvi, 40, 65)

378 Bibliography

[Carpendale et al. 95] M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David Fracchia.
“Three-Dimensional Pliable Surfaces: For Effective Presentation of Visual Information.” In Pro-
ceedings of the Symposium on User Interface Software and Technology (UIST), pp. 217–226. ACM,
1995. (page 338)

[Carpendale et al. 96] M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David Fracchia. “Dis-
tortion Viewing Techniques for 3D Data.” In Proceedings of the IEEE Symposium on Information
Visualization (InfoVis), pp. 46–53. IEEE Computer Society, 1996. (pages 121, 338)

[Carpendale 08] Sheelagh Carpendale. “Evaluating Information Visualizations.” In Information Visual-
ization: Human-Centered Issues and Perspectives, Lecture Notes in Computer Science, 4950, edited
by Andreas Kerren, John T. Stasko, Jean-Daniel Fekete, and Chris North, pp. 19–45. Springer,
2008. (page 92)

[Carr et al. 04] Hamish Carr, Jack Snoeyink, and Michiel van de Panne. “Simplifying Flexible Isosurfaces
Using Local Geometric Measures.” In Proceedings of the IEEE Conference on Visualization (Vis),
pp. 497–504. IEEE Computer Society, 2004. (pages 186, 197)

[Chalmers 96] M. Chalmers. “A Linear Iteration Time Layout Algorithm for Visualising High Dimensional
Data.” In Proceedings of the IEEE Conference on Visualization (Vis), pp. 127–132. IEEE Computer
Society, 1996. (page 321)

[Chi and Riedl 98] Ed H. Chi and John T. Riedl. “An Operator Interaction Framework for Visualization
Systems.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 63–70.
IEEE Computer Society, 1998. (page 65)

[Chuah 98] Mei C. Chuah. “Dynamic Aggregation with Circular Visual Designs.” In Proceedings of the
IEEE Symposium on Information Visualization (InfoVis), pp. 35–43. IEEE Computer Society, 1998.
(pages 310, 311)

[Cleveland and McGill 84a] William S. Cleveland and Robert McGill. “Graphical Perception: Theory, Ex-
perimentation, and Application to the Development of Graphical Methods.” Journal of the American
Statistical Association 79:387 (1984), 531–554. (pages 104, 105, 113, 114, 155)

[Cleveland and McGill 84b] William S. Cleveland and Robert McGill. “The Many Faces of a Scatterplot.”
Journal of the American Statistical Association 79:388 (1984), 807–822. (page 19)

[Cleveland et al. 88] William S. Cleveland, Marylyn E. McGill, and Robert McGill. “The Shape Parameter
of a Two-Variable Graph.” Journal of the American Statistical Association 83:402 (1988), 289–300.
(page 176)

[Cleveland 93a] William S. Cleveland. “A Model for Studying Display Methods of Statistical Graphics
(with Discussion).” Journal of Computational and Statistical Graphics 2:4 (1993), 323–364. (page
114)

[Cleveland 93b] William S. Cleveland. Visualizing Data. Hobart Press, 1993. (pages 175, 176)

[Cockburn and McKenzie 00] Andy Cockburn and Bruce McKenzie. “An Evaluation of Cone Trees.” In
People and Computers XIV: Usability or Else. British Computer Society Conference on Human Com-
puter Interaction, pp. 425–436. Springer, 2000. (pages 129, 141)

Bibliography 379

[Cockburn and McKenzie 01] Andy Cockburn and Bruce McKenzie. “3D or Not 3D? Evaluating the Ef-
fect of the Third Dimension in a Document Management System.” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI), pp. 434–441. ACM, 2001. (pages 129,
141)

[Cockburn and McKenzie 04] Andy Cockburn and Bruce McKenzie. “Evaluating Spatial Memory in Two
and Three Dimensions.” International Journal of Human-Computer Studies 61:30 (2004), 359–373.
(page 141)

[Cockburn et al. 08] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. “A Review of
Overview+Detail, Zooming, and Focus+Context Interfaces.” Computing Surveys 41:1 (2008), 1–31.
(pages 295, 337)

[Cormen et al. 90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990. (page 92)

[Craig and Kennedy 03] Paul Craig and Jessie Kennedy. “Coordinated Graph and Scatter-Plot Views for
the Visual Exploration of Microarray Time-Series Data.” In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis), pp. 173–180. IEEE Computer Society, 2003. (pages 271, 272)

[Csikszentmihalyi 91] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience. Harper,
1991. (page 139)

[Davidson et al. 01] George S. Davidson, Brian N. Wylie, and Kevin W. Boyack. “Cluster Stability and the
Use of Noise in Interpretation of Clustering.” In Proceedings of the IEEE Symposium on Information
Visualization (InfoVis), pp. 23–30. IEEE Computer Society, 2001. (pages 52, 130)

[Diehl et al. 10] Stephan Diehl, Fabian Beck, and Micheal Burch. “Uncovering Strengths and Weak-
nesses of Radial Visualizations—An Empirical Approach.” IEEE Transactions on Visualization and
Computer Graphics (Proc. InfoVis 10) 16:6 (2010), 935–942. (pages 170, 176)

[Dix and Ellis 98] A. Dix and G. Ellis. “Starting Simple—Adding Value to Static Visualisation Through
Simple Interaction.” In Proceedings of the International Working Conference on Advanced Visual
Interfaces (AVI), pp. 124–134. ACM, 1998. (page 261)

[Dow et al. 05] Steven Dow, Blair MacIntyre, Jaemin Lee, Christopher Oezbek, Jay David Bolter, and
Maribeth Gandy. “Wizard of Oz Support Throughout an Iterative Design Process.” IEEE Pervasive
Computing 4:4 (2005), 18–26. (page 77)

[Draper et al. 09] Geoffrey M. Draper, Yarden Livnat, and Richard F. Riesenfeld. “A Survey of Radial
Methods for Information Visualization.” IEEE Transactions on Visualization and Computer Graphics
15:5 (2009), 759–776. (page 176)

[Drebin et al. 88] Robert A. Drebin, Loren C. Carpenter, and Pat Hanrahan. “Volume Rendering.” Com-
puter Graphics (Proc. SIGGRAPH 88) 22:4 (1988), 65–74. (page 197)

[Dykes and Brunsdon 07] Jason Dykes and Chris Brunsdon. “Geographically Weighted Visualization:
Interactive Graphics for Scale-Varying Exploratory Analysis.” IEEE Transactions on Visualization
and Computer Graphics (Proc. InfoVis 07) 13:6 (2007), 1161–1168. (pages 313, 314, 321)

[Eick et al. 92] Stephen G. Eick, Joseph L. Steffen, and Eric E Sumner, Jr. “Seesoft—A Tool for Visual-
izing Line Oriented Software Statistics.” IEEE Transactions on Software Engineering 18:11 (1992),
957–968. (page 176)

380 Bibliography

[Elmqvist and Fekete 10] Niklas Elmqvist and Jean-Daniel Fekete. “Hierarchical Aggregation for Infor-
mation Visualization: Overview, Techniques and Design Guidelines.” IEEE Transactions on Visual-
ization and Computer Graphics 16:3 (2010), 439–454. (page 321)

[Emerson et al. 12] John W. Emerson, Walton A. Green, Barret Schloerke, Dianne Cook, Heike Hof-
mann, and Hadley Wickham. “The Generalized Pairs Plot.” Journal of Computational and Graphical
Statistics 22:1 (2012), 79–91. (page 175)

[Engel et al. 06] Klaus Engel, Markus Hadwiger, Joe Kniss, Christof Reza-Salama, and Daniel Weiskopf.
Real-Time Volume Graphics. A K Peters, 2006. (page 197)

[Ferstay et al. 13] Joel A. Ferstay, Cydney B. Nielsen, and Tamara Munzner. “Variant View: Visualizing
Sequence Variants in Their Gene Context.” IEEE Transactions on Visualization Computer Graphics
(Proc. InfoVis 13) 19:12 (2013), 2546–2555. (page 4)

[Few 07] Stephen Few. “Graph Design I.Q. Test.” http://perceptualedge.com/files/GraphDesignIQ.html,
2007. (page 122)

[Few 12] Stephen Few. Show Me the Numbers: Designing Tables and Graphs to Enlighten, Second edition.
Analytics Press, 2012. (page xvii)

[Field and Hole 03] Andy Field and Graham A. Hole. How to Design and Report Experiments. Sage, 2003.
(page 93)

[Frick et al. 95] A. Frick, A. Ludwig, and H. Mehldau. “A Fast Adaptive Layout Algorithm for Undirected
Graphs.” In Proceedings of the International Symposium on Graph Drawing (GD 94), Lecture Notes
in Computer Science, 894, pp. 388–403. Springer, 1995. (page 216)

[Friendly 08] Michael Friendly. “A Brief History of Data Visualization.” In Handbook of Data Visualiza-
tion, Computational Statistics, edited by Antony Unwin, Chun-houh Chen, and Wolfgang K. Härdle,
pp. 15–56. Springer, 2008. (pages 175, 197)

[Fua et al. 99] Ying-Huey Fua, Matthew O. Ward, and Elke A. Rundensteiner. “Hierarchical Parallel Co-
ordinates for Exploration of Large Datasets.” In Proceedings of the IEEE Conference on Visualization
(Vis), pp. 43–50. IEEE Computer Society, 1999. (pages 165, 311, 312, 321)

[Furnas 82] George W. Furnas. “The FISHEYE View: A New Look at Structured Files.” Technical report,
Bell Laboratories Technical Memorandum No. 82-11221-22, 1982. (page 337)

[Furnas 86] George W. Furnas. “Generalized Fisheye Views.” In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI), pp. 16–23. ACM, 1986. (pages 324, 337)

[Furnas 06] George W. Furnas. “A Fisheye Follow-up: Further Reflection on Focus + Context.” In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 999–1008.
ACM, 2006. (pages 335, 338)

[Gehlenborg and Wong 12] Nils Gehlenborg and Bang Wong. “Points of View: Networks.” Nature Methods
9:2 (2012), Article no. 115. (pages 209, 371)

[Ghoniem et al. 05] Mohammad Ghoniem, Jean-Daniel Fekete, and Philippe Castagliola. “On the Read-
ability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and
Statistical Analysis.” Information Visualization 4:2 (2005), 114–135. (pages 212, 216)

Bibliography 381

[Gleicher et al. 11] Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles D. Hansen, and
Jonathan C. Roberts. “Visual Comparison for Information Visualization.” Information Visualization
10:4 (2011), 289–309. (page 296)

[Gratzl et al. 13] Samuel Gratzl, Alexander Lex, Nils Gehlenborg, Hanspeter Pfister, and Marc Streit.
“LineUp: Visual Analysis of Multi-Attribute Rankings.” IEEE Transactions on Visualization and
Computer Graphics (Proc. InfoVis 13) 19:12 (2013), 2277–2286. (pages 246, 247)

[Green 89] T. R. G. Green. “Cognitive Dimensions of Notations.” In People and Computers V, edited by
A. Sutcliffe and L. Macaulay, pp. 443–460. Cambridge University Press, 1989. (page 69)

[Grivet et al. 06] Sébastian Grivet, David Auber, Jean-Philippe Domenger, and Guy Melançon. “Bubble
Tree Drawing Algorithm.” In Proceedings of the Conference on Computational Imaging and Vision,
Computer Vision and Graphics, pp. 633–641. Springer, 2006. (page 202)

[Grossman et al. 07] Tovi Grossman, Daniel Wigdor, and Ravin Balakrishnan. “Exploring and Reducing
the Effects of Orientation on Text Readability in Volumetric Displays.” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI), pp. 483–492. ACM, 2007. (page 124)

[Hachul and Jünger 04] S. Hachul and M. Jünger. “Drawing Large Graphs with a Potential-Field-Based
Multilevel Algorithm.” In Proceedings of the International Symposium on Graph Drawing (GD 04),
Lecture Notes in Computer Science, 3383, pp. 285–295. Springer, 2004. (page 216)

[Hansen and Johnson 05] Charles C. Hansen and Christopher R. Johnson, editors. The Visualization
Handbook. Elsevier, 2005. (pages xvii, 40, 92)

[Havre et al. 00] Susan Havre, Beth Hetzler, and Lucy Nowell. “ThemeRiver: Visualizing Theme Changes
over Time.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 9–20.
IEEE Computer Society, 2000. (page 175)

[Healey 07] Christopher G. Healey. “Perception in Vision.” http://www.csc.ncsu.edu/faculty/healey/PP,
2007. (page 115)

[Heer and Agrawala 06] Jeffrey Heer and Maneesh Agrawala. “Multi-Scale Banking to 45 Degrees.” IEEE
Transactions on Visualization and Computer Graphics (Proc. InfoVis 06) 12:5 (2006), 701–708. (pages
158, 176)

[Heer and Bostock 10] Jeffrey Heer and Michael Bostock. “Crowdsourcing Graphical Perception:
Using Mechanical Turk to Assess Visualization Design.” In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI), pp. 203–212. ACM, 2010. DOI
10.1145/1753326.1753357. (pages 105, 105, 115, 370)

[Heer and Card 04] Jeffrey Heer and Stuart K. Card. “DOITrees Revisited: Scalable, Space-Constrained
Visualization of Hierarchical Data.” In Proceedings of the International Working Conference on Ad-
vanced Visual Interfaces (AVI), pp. 421–424. ACM, 2004. (page 325)

[Heer and Robertson 07] Jeffrey Heer and George Robertson. “Animated Transitions in Statistical Data
Graphics.” IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 07) 13:6 (2007),
1240–1247. (pages 249, 262)

[Heer and Shneiderman 12] Jeffrey Heer and Ben Shneiderman. “Interactive Dynamics for Visual Anal-
ysis: A Taxonomy of Tools That Support the Fluent and Flexible Use of Visualizations.” Queue 10:2
(2012), 30–55. (pages 64, 175)

382 Bibliography

[Heer et al. 08] Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. “Graphical Histories
for Visualization: Supporting Analysis, Communication, and Evaluation.” IEEE Transactions on
Visualization Computer Graphics (Proc. InfoVis 08) 14:6 (2008), 1189–1196. (page 50, 50)

[Heer et al. 09] Jeffrey Heer, Nicholas Kong, and Maneesh Agrawala. “Sizing the Horizon: The Effects of
Chart Size and Layering on the Graphical Perception of Time Series Visualizations.” In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 1303–1312. ACM,
2009. DOI 10.1145/1518701.1518897. (pages 90, 91, 370)

[Henry and Fekete 06] Nathalie Henry and Jean-Daniel Fekete. “MatrixExplorer: A Dual-Representation
System to Explore Social Networks.” IEEE Transactions on Visualization and Computer Graphics
(Proc. InfoVis 06) 12:5 (2006), 677–684. (pages 83, 84, 85, 216)

[Henry et al. 07] Nathalie Henry, Jean-Daniel Fekete, and Michael McGuffin. “NodeTrix: A Hybrid Vi-
sualization of Social Networks.” IEEE Transactions on Computer Graphics and Visualization (Proc.
InfoVis 07) 13:6 (2007), 1302–1309. (page 216)

[Henze 98] Chris Henze. “Feature Detection in Linked Derived Spaces.” In Proceedings of the IEEE
Conference on Visualization (Vis), pp. 87–94. IEEE Computer Society, 1998. (pages 62, 63, 65)

[Herman et al. 00] Ivan Herman, Guy Melançon, and M. Scott Marshall. “Graph Visualisation in Infor-
mation Visualisation: A Survey.” IEEE Transactions on Visualization and Computer Graphics (TVCG)
6:1 (2000), 24–44. (page 216)

[Holten 06] Danny Holten. “Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hier-
archical Data.” IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 06) 12:5
(2006), 741–748. (pages 292, 293)

[Holtzblatt and Jones 93] K. Holtzblatt and S. Jones. “Contextual Inquiry: A Participatory Technique
for System Design.” In Participatory Design: Principles and Practices, edited by D. Schuler and
A. Namioka, pp. 177–210. Lawrence Erlbaum Associates, 1993. (pages 77, 92)

[Hornbæk and Hertzum 11] Kaspar Hornbæk and Morten Hertzum. “The Notion of Overview in Infor-
mation Visualization.” International Journal of Human-Computer Studies 69:7–8 (2011), 509–525.
(page 142)

[Hornbaek 13] Kaspar Hornbaek. “Some Whys and Hows of Experiments in Human–Computer Interac-
tion.” Foundations and Trends in Human–Computer Interaction 5:4. (page 93)

[Hu 05] Yifan Hu. “Efficient and High Quality Force-Directed Graph Drawing.” The Mathematica Journal
10 (2005), 37–71. (pages 207, 207, 216)

[Hu 14] Yifan Hu. “A Gallery of Large Graphs.” http://yifanhu.net/GALLERY/GRAPHS/, 2014. (page
207)

[Ingram et al. 09] Stephen Ingram, Tamara Munzner, and Marc Olano. “Glimmer: Multilevel MDS on
the GPU.” IEEE Transactions on Visualization and Computer Graphics 15:2 (2009), 249–261. (pages
317, 318, 321)

[Ingram et al. 10] Stephen Ingram, Tamara Munzner, Veronika Irvine, Melanie Tory, Steven Bergner, and
Torsten Möller. “DimStiller: Workflows for Dimensional Analysis and Reduction.” In Proceedings of
the IEEE Conference on Visual Analytics Software and Technologies (VAST), pp. 3–10. IEEE Computer
Society, 2010. (page 321)

Bibliography 383

[Inselberg and Dimsdale 90] Alfred Inselberg and Bernard Dimsdale. “Parallel Coordinates: A Tool for
Visualizing Multi-Dimensional Geometry.” In Proceedings of the IEEE Conference on Visualization
(Vis). IEEE Computer Society, 1990. (page 176)

[Inselberg 09] Alfred Inselberg. Parallel Coordinates: Visual Multidimensional Geometry and Its Applica-
tions. Springer, 2009. (page 176)

[Javed and Elmqvist 12] Waqas Javed and Niklas Elmqvist. “Exploring the Design Space of Composite
Visualization.” In Proceedings of the IEEE Symposium on Pacific Visualization (PacificVis), pp. 1–9.
IEEE Computer Society, 2012. (page 296)

[Javed et al. 10] Waqas Javed, Bryan McDonnel, and Niklas Elmqvist. “Graphical Perception of Multiple
Time Series.” IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 10) 16:6
(2010), 927–934. (page 292)

[Johnson and Shneiderman 91] Brian Johnson and Ben Shneiderman. “Treemaps: A Space-Filling Ap-
proach to the Visualization of Hierarchical Information.” In Proceedings of the IEEE Conference on
Visualization (Vis), pp. 284–291. IEEE Computer Society, 1991. (page 217)

[Johnson 10] Jeff Johnson. Designing with the Mind in Mind: Simple Guide to Understanding User Inter-
face Design Rules. Morgan Kaufmann, 2010. (page 142)

[Jones et al. 02] James A. Jones, Mary Jean Harrold, and John Stasko. “Visualization of Test Infor-
mation to Assist Fault Localization.” In Proceedings of the International Conference on Software
Engineering (ICSE), pp. 467–477. ACM, 2002. (pages 172, 173, 176)

[Kadmon and Shlomi 78] Naftali Kadmon and Eli Shlomi. “A Polyfocal Projection for Statistical Sur-
faces.” The Cartographic Journal 15:1 (1978), 36–41. (page 337)

[Kaiser 96] Peter K. Kaiser. The Joy of Visual Perception. http://www.yorku.ca/eye, 1996. (page 222)

[Kaufman and Mueller 05] Arie Kaufman and Klaus Mueller. “Overview of Volume Rendering.” In The
Visualization Handbook, edited by Charles C. Hansen and Christopher R. Johnson, pp. 127–174.
Elsevier, 2005. (page 197)

[Keahey and Robertson 97] T. Alan Keahey and Edward L. Robertson. “Nonlinear Magnification Fields.”
In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 51–58. IEEE Com-
puter Society, 1997. (page 338)

[Keahey 98] T. Alan Keahey. “The Generalized Detail-in-Context Problem.” In Proceedings of the IEEE
Symposium on Information Visualization (InfoVis), pp. 44–51. IEEE Computer Society, 1998. (page
333)

[Keim and Kriegel 94] Daniel A. Keim and Hans-Peter Kriegel. “VisDB: Database Exploration Using Mul-
tidimensional Visualization.” IEEE Computer Graphics and Applications 14:5 (1994), 40–49. (pages
340, 341, 347, 348, 349, 350, 367)

[Keim 97] Daniel A. Keim. “Visual Techniques for Exploring Databases.” KDD 1997 Tutorial Notes,
1997. http://www.dbs.informatik.uni-muenchen.de/∼daniel/KDD97.pdf. (page 175)

[Keim 00] Daniel A. Keim. “Designing Pixel-Oriented Visualization Techniques: Theory and Applica-
tions.” IEEE Transactions on Visualization and Computer Graphics 6:1 (2000), 59–78. (page 176)

384 Bibliography

[Kindlmann 02] Gordon Kindlmann. “Transfer Functions in Direct Volume Rendering: Design, Inter-
face, Interaction.” SIGGRAPH 2002 Course Notes, 2002. http://www.cs.utah.edu/∼gk/papers/
sig02-TF-notes.pdf. (pages 233, 234)

[Kindlmann 04] Gordon Kindlmann. “Superquadric Tensor Glyphs.” In Proceedings of the Eurograph-
ics/IEEE Conference on Visualization (VisSym), pp. 147–154. Eurographics, 2004. (pages 195, 196,
196, 198)

[Klippel et al. 09] Alexander Klippel, Frank Hardisty, Rui Li, and Chris Weaver. “Color Enhanced Star
Plot Glyphs—Can Salient Shape Characteristics Be Overcome?” Cartographica 44:3 (2009), 217–
231. (page 296)

[Kniss et al. 05] Joe Kniss, Gordon Kindlmann, and Charles Hansen. “Multidimensional Transfer Func-
tions for Volume Rendering.” In The Visualization Handbook, edited by Charles Hansen and Christo-
pher Johnson, pp. 189–210. Elsevier, 2005. (pages 187, 188, 197)

[Kniss 02] Joe Kniss. “Interactive Volume Rendering Techniques.” Master’s thesis, University of Utah,
Department of Computer Science, 2002. (pages 182, 187, 197)

[Kong et al. 10] Nicholas Kong, Jeffrey Heer, and Maneesh Agrawala. “Perceptual Guidelines for Creating
Rectangular Treemaps.” IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis
10) 16:6 (2010), 990–998. (page 217)

[Kosara et al. 03] Robert Kosara, Christopher G. Healey, Victoria Interrante, David H. Laidlaw, and Colin
Ware. “Thoughts on User Studies: Why, How, and When.” IEEE Computer Graphics and Applications
23:4 (2003), 20–25. (page 92)

[Kuniavsky 03] Mike Kuniavsky. Observing the User Experience: A Practitioner’s Guide to User Research.
Morgan Kaufmann, 2003. (page 92)

[Laidlaw et al. 05] David H. Laidlaw, Robert M. Kirby, Cullen D. Jackson, J. Scott Davidson, Timothy S.
Miller, Marco Da Silva, William H. Warren, and Michael J. Tarr. “Comparing 2D Vector Field Visual-
ization Methods: A User Study.” IEEE Transactions on Visualization and Computer Graphics (TVCG)
11:1 (2005), 59–70. (page 190, 190)

[Lam and Munzner 10] Heidi Lam and Tamara Munzner. A Guide to Visual Multi-Level Interface Design
from Synthesis of Empirical Study Evidence. Synthesis Lectures on Visualization Series, Morgan
Claypool, 2010. (pages 295, 335, 337)

[Lam et al. 06] Heidi Lam, Ronald A. Rensink, and Tamara Munzner. “Effects of 2D Geometric Trans-
formations on Visual Memory.” In Proceedings of the Symposium on Applied Perception in Graphics
and Visualization (APGV), pp. 119–126. ACM, 2006. (page 335)

[Lam 08] Heidi Lam. “A Framework of Interaction Costs in Information Visualization.” IEEE Transactions
on Visualization and Computer Graphics (Proc. InfoVis 08) 14:6 (2008), 1149–1156. (page 142)

[Lambert et al. 10] Antoine Lambert, David Auber, and Guy Melançon. “Living Flows: Enhanced Ex-
ploration of Edge-Bundled Graphs Based on GPU-Intensive Edge Rendering.” In Proceedings of
the International Conference on Information Visualisation (IV), pp. 523–530. IEEE Computer Society,
2010. (pages 328, 335, 336)

Bibliography 385

[Lamping et al. 95] John Lamping, Ramana Rao, and Peter Pirolli. “A Focus+Content Technique Based
on Hyperbolic Geometry for Visualizing Large Hierarchies.” In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI), pp. 401–408. ACM, 1995. (page 338)

[Laramee et al. 04] Robert S. Laramee, Helwig Hauser, Helmut Doleisch, Benjamin Vrolijk, Frits H. Post,
and Daniel Weiskopf. “The State of the Art in Flow Visualization: Dense and Texture-Based Tech-
niques.” Computer Graphics Forum (Proc. Eurographics 04) 23:2 (2004), 203–221. (page 198)

[Larkin and Simon 87] Jill H. Larkin and Herbert A. Simon. “Why a Diagram Is (Sometimes) Worth Ten
Thousand Words.” Cognitive Science 11:1 (1987), 65–99. (page 19)

[Lasseter 87] John Lasseter. “Principles of Traditional Animation Applied to 3D Computer Animation.”
Computer Graphics (Proc. SIGGRAPH 87) 21:4 (1987), 35–44. (page 141)

[Lee et al. 06] Bongshin Lee, Catherine Plaisant, Cynthia Sims Parr, Jean-Daniel Fekete, and Nathalie
Henry. “Task Taxonomy for Graph Visualization.” In Proceedings of the AVI Workshop on BEyond
time and errors: novel evaLuation methods for Information Visualization (BELIV), Article no. 14. ACM,
2006. (page 64)

[Leung and Apperley 94] Ying K. Leung and Mark Apperley. “A Review and Taxonomy of Distortion-
Oriented Presentation Techniques.” Transactions on Computer-Human Interaction (ToCHI) 1:2
(1994), 126–160. (page 337)

[Levoy 88] Marc Levoy. “Display of Surfaces from Volume Data.” IEEE Computer Graphics and Applica-
tions 8:3 (1988), 29–37. (page 197)

[Li and Shen 07] Liya Li and Han-Wei Shen. “Image-Based Streamline Generation and Rendering.” IEEE
Transactions on Visualization and Computer Graphics (TVCG) 13:3 (2007), 630–640. (page 125, 125)

[Liiv 10] Innar Liiv. “Seriation and Matrix Reordering Methods: An Historical Overview.” Journal of
Statistical Analysis and Data Mining 3:2 (2010), 70–91. (page 176)

[Lopez-Hernandez et al. 10] Roberto Lopez-Hernandez, David Guilmaine, Michael J. McGuffin, and Lee
Barford. “A Layer-Oriented Interface for Visualizing Time-Series Data from Oscilloscopes.” In Pro-
ceedings of the IEEE Symposium on Pacific Visualization (PacificVis), pp. 41–48. IEEE Computer
Society, 2010. (page 128, 128)

[Lorensen and Cline 87] William E. Lorensen and Harvey E. Cline. “Marching Cubes: A High Resolution
3D Surface Construction Algorithm.” Computer Graphics (Proc. SIGGRAPH 87) 21:4 (1987), 163–
169. (page 197)

[Maalej and Thurimella 13] Walid Maalej and Anil Kumar Thurimella. “An Introduction to Require-
ments Knowledge.” In Managing Requirements Knowledge, edited by Walid Maalej and Anil Kumar
Thurimella, pp. 1–22. Springer, 2013. (page 92)

[MacEachren 79] Alan M. MacEachren. “The Evolution of Thematic Cartography/A Research Methodol-
ogy and Historical Review.” The Canadian Cartographer 16:1 (1979), 17–33. (page 197)

[MacEachren 95] Alan M. MacEachren. How Maps Work: Representation, Visualization, and Design.
Guilford Press, 1995. (pages 115, 197)

[Mackinlay et al. 90] Jock D. Mackinlay, Stuart K. Card, and George G. Robertson. “Rapid Controlled
Movement Through a Virtual 3D Workspace.” Computer Graphics (Proc. SIGGRAPH 90), pp. 171–
176. (page 262)

386 Bibliography

[Mackinlay et al. 91] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. “The Perspective
Wall: Detail and Context Smoothly Integrated.” In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), pp. 173–179. ACM, 1991. (page 338)

[Mackinlay 86] Jock Mackinlay. “Automating the Design of Graphical Presentations of Relational Infor-
mation.” Transactions on Graphics (TOG) 5:2 (1986), 110–141. (page 115, 115)

[Maguire et al. 12] Eamonn Maguire, Philippe Rocca-Serra, Susanna-Assunta Sansone, Jim Davies, and
Min Chen. “Taxonomy-Based Glyph Design—With a Case Study on Visualizing Workflows of Bio-
logical Experiments.” IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 12)
18:12 (2012), 2603–2612. (pages 115, 230, 231, 296)

[McGrath 94] J.E. McGrath. “Methodology Matters: Doing Research in the Behavioral and Social Sci-
ences.” In Readings in Human-Computer Interaction: Toward the Year 2000, edited by R.M. Baecker,
J. Grudin, W. Buxton, and S. Greenberg, pp. 152–169. Morgan Kaufmann, 1994. (page 91)

[McGuffin and Balakrishnan 05] Michael J. McGuffin and Ravin Balakrishnan. “Interactive Visualiza-
tion of Genealogical Graphs.” In Proceedings of the IEEE Symposium on Information Visualization
(InfoVis), pp. 17–24. IEEE Computer Society, 2005. (pages 81, 82, 83)

[McGuffin and Robert 10] Michael J. McGuffin and Jean-Marc Robert. “Quantifying the Space-
Efficiency of 2D Graphical Representations of Trees.” Information Visualization 9:2 (2010), 115–140.
(pages 16, 175, 214, 217)

[McGuffin 12] Michael J. McGuffin. “Simple Algorithms for Network Visualization: A Tutorial.” Tsinghua
Science and Technology (Special Issue on Visualization and Computer Graphics) 17:4 (2012), 383–
398. (pages 211, 212, 216)

[McGuffin 14] Michael McGuffin. “Visualization Course Figures.” http://www.michaelmcguffin.com/
courses/vis, 2014. (pages 163, 175)

[McLachlan et al. 08] Peter McLachlan, Tamara Munzner, Eleftherios Koutsofios, and Stephen North.
“LiveRAC—Interactive Visual Exploration of System Management Time-Series Data.” In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 1483–1492. ACM,
2008. DOI 10.1145/1357054.1357286. (pages 87, 87, 88, 255, 256, 262, 369, 372)

[McLoughlin et al. 13] Tony McLoughlin, Mark W. Jones, Robert S. Laramee, Rami Malki, Ian Masters,
and Charles D. Hansen. “Similarity Measures for Enhancing Interactive Streamline Seeding.” IEEE
Transactions on Visualization and Computer Graphics 19:8 (2013), 1342–1353. (page 192, 192)

[McLouglin et al. 10] Tony McLouglin, Robert S. Laramee, Ronald Peikert, Frits H. Post, and Min Chen.
“Over Two Decades of Integration-Based Geometric Flow Visualization.” Computer Graphics Forum
(Proc. Eurographics 09, State of the Art Reports) 6:29 (2010), 1807–1829. (page 198)

[Melançon 06] Guy Melançon. “Just How Dense Are Dense Graphs in the Real World?: A Methodological
Note.” In Proceedings of the AVI Workshop BEyond time and errors: novel evaLuation methods for
Information Visualization (BELIV). ACM, 2006. (pages 210, 216)

[Meyer et al. 09] Miriah Meyer, Tamara Munzner, and Hanspeter Pfister. “MizBee: A Multiscale Synteny
Browser.” IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 09) 15:6 (2009),
897–904. (pages 69, 70)

Bibliography 387

[Meyer et al. 13] Miriah Meyer, Michael Sedlmair, P. Samuel Quinan, and Tamara Munzner. “The Nested
Blocks and Guidelines Model.” Information Visualization. Prepublished December 10, 2013, doi:10.
1177/1473871613510429. (page 91)

[Micallef et al. 12] Luanna Micallef, Pierre Dragicevic, and Jean-Daniel Fekete. “Assessing the Effect of
Visualizations on Bayesian Reasoning Through Crowdsourcing.” IEEE Transactions on Visualization
and Computer Graphics (Proc. InfoVis 12) 18:12 (2012), 2536–2545. (page 69)

[Moscovich et al. 09] Tomer Moscovich, Fanny Chevalier, Nathalie Henry, Emmanuel Pietriga, and Jean-
Daniel Fekete. “Topology-Aware Navigation in Large Networks.” In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI), pp. 2319–2328. ACM, 2009. (page 337)

[Mukherjea et al. 96] Sougata Mukherjea, Kyoji Hirata, and Yoshinori Hara. “Visualizing the Results of
Multimedia Web Search Engines.” In Proceedings of the IEEE Symposium on Information Visualiza-
tion (InfoVis), pp. 64–65. IEEE Computer Society, 1996. (page 122)

[Munzner et al. 99] Tamara Munzner, François Guimbretière, and George Robertson. “Constellation: A
Visualization Tool For Linguistic Queries from MindNet.” In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis), pp. 132–135. IEEE Computer Society, 1999. (pages 341, 360,
367)

[Munzner et al. 03] Tamara Munzner, François Guimbretière, Serdar Tasiran, Li Zhang, and Yun-
hong Zhou. “TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context with Guaran-
teed Visibility.” Transactions on Graphics (Proc. SIGGRAPH 03) 22:3 (2003), 453–462. DOI
10.1145/882262.882291. (pages 59, 59, 65, 331, 332, 338, 369, 373)

[Munzner 98] Tamara Munzner. “Exploring Large Graphs in 3D Hyperbolic Space.” IEEE Computer
Graphics and Applications 18:4 (1998), 18–23. (pages 330, 331, 338)

[Munzner 00] Tamara Munzner. “Constellation: Linguistic Semantic Networks (Chap. 5).” In Interactive
Visualization of Large Graphs and Networks (PhD thesis), pp. 105–122. Stanford University Depart-
ment of Computer Science, 2000. (pages 340, 341, 360, 361, 363, 364, 364, 365, 365, 366, 367,
374)

[Munzner 09a] Tamara Munzner. “A Nested Model for Visualization Design and Validation.” IEEE Trans-
actions on Visualization and Computer Graphics (Proc. InfoVis 09) 15:6 (2009), 921–928. (page 91)

[Munzner 09b] Tamara Munzner. “Visualization.” In Fundamentals of Computer Graphics, edited by
Peter Shirley and Steve Marschner, Third edition, pp. 675–708. A K Peters, 2009. (page xxi)

[Newman and Yi 06] Timothy S. Newman and Hong Yi. “A Survey of the Marching Cubes Algorithm.”
Computers & Graphics 30:5 (2006), 854–879. (page 197)

[Noack 03] Andreas Noack. “An Energy Model for Visual Graph Clustering.” In Proceedings of the Inter-
national Symposium on Graph Drawing (GD 03), Lecture Notes in Computer Science, 2912, pp. 425–
436. Springer, 2003. (pages 89, 89, 90)

[Openshaw 84] Stan Openshaw. The Modifiable Areal Unit Problem. Number 38 in Concepts and Tech-
niques in Modern Geography, Geo Books, 1984. (page 321)

[Peng et al. 04] Wei Peng, Matthew O. Ward, and Elke A. Rundensteiner. “Clutter Reduction in Multi-
Dimensional Data Visualization Using Dimension Reordering.” In Proceedings of the IEEE Sympo-
sium on Information Visualization (InfoVis), pp. 89–96. IEEE Computer Society, 2004. (page 321)

388 Bibliography

[Phan et al. 05] Doantam Phan, Ling Xiao, Ron Yeh, Pat Hanrahan, and Terry Winograd. “Flow Map
Layout.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 219–224.
IEEE Computer Society, 2005. (pages 85, 86, 86)

[Pirolli 07] Peter Pirolli. Information Foraging Theory: Adaptive Interaction with Information. Oxford
University Press, 2007. (pages 303, 320)

[Plaisant et al. 02] Catherine Plaisant, Jesse Grosjean, and Ben Bederson. “SpaceTree: Supporting Ex-
ploration in Large Node Link Tree, Design Evolution and Empirical Evaluation.” In Proceedings
of the IEEE Symposium on Information Visualization (InfoVis), pp. 57–64. IEEE Computer Society,
2002. (pages 59, 59, 65)

[Plaisant 04] Catherine Plaisant. “The Challenge of Information Visualization Evaluation.” In Proceed-
ings of the International Working Conference on Advanced Visual Interfaces (AVI), pp. 109–116. ACM,
2004. (page 92)

[Plumlee and Ware 06] M. Plumlee and C. Ware. “Zooming versus Multiple Window Interfaces: Cognitive
Costs of Visual Comparisons.” Transactions on Computer-Human Interaction (ToCHI) 13:2 (2006),
179–209. (page 295)

[Post et al. 03] Frits H. Post, Benjamin Vrolijka, Helwig Hauser, Robert S. Laramee, and Helmut
Doleisch. “The State of the Art in Flow Visualisation: Feature Extraction and Tracking.” Computer
Graphics Forum (Proc. Eurographics 03) 22:4 (2003), 1–17. (page 198)

[Pretorius and van Wijk 09] A. Johannes Pretorius and Jarke J. van Wijk. “What Does the User Want to
See? What Do the Data Want to Be?” Information Visualization 8:3 (2009), 153–166. (page 92)

[Purchase 12] Helen Purchase. Experimental Human-Computer Interaction: A Practical Guide with Visual
Examples. Cambridge University Press, 2012. (page 93)

[Rieder et al. 08] Christian Rieder, Felix Ritter, Matthias Raspe, and Heinz-Otto Peitgen. “Interactive
Visualization of Multimodal Volume Data for Neurosurgical Tumor Treatment.” Computer Graphics
Forum (Proc. EuroVis 08) 27:3 (2008), 1055–1062. (page 259)

[Robbins 06] Naomi B. Robbins. “Dot Plots: A Useful Alternative to Bar Charts.” http://www.
perceptualedge.com/articles/b-eye/dot plots.pdf, 2006. (page 297)

[Roberts 07] Jonathan C. Roberts. “State of the Art: Coordinated & Multiple Views in Exploratory Visu-
alization.” In Proceedings of the Conference on Coordinated & Multiple Views in Exploratory Visual-
ization (CMV), pp. 61–71. IEEE Computer Society, 2007. (page 296)

[Robertson et al. 91] George Robertson, Jock Mackinlay, and Stuart Card. “Cone Trees: Animated 3D
Visualizations of Hierarchical Information.” In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), pp. 189–194. ACM, 1991. (pages 327, 338)

[Robertson et al. 98] George Robertson, Mary Czerwinski, Kevin Larson, Daniel C. Robbins, David Thiel,
and Maarten Van Dantzich. “Data Mountain: Using Spatial Memory for Document Management.”
In Proceedings of the Symposium on User Interface Software and Technology (UIST), pp. 153–162.
ACM, 1998. (page 129)

[Robertson et al. 08] George Robertson, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John
Stasko. “Effectiveness of Animation in Trend Visualization.” IEEE Transactions on Visualization
and Computer Graphics (Proc. InfoVis 08) 14:6 (2008), 1325–1332. (pages 142, 147)

Bibliography 389

[Rogowitz and Treinish 96] Bernice E. Rogowitz and Lloyd A. Treinish. “How Not to Lie with Visualiza-
tion.” Computers in Physics 10:3 (1996), 268–273. (page 240)

[Rogowitz and Treinish 98] Bernice E. Rogowitz and Lloyd A. Treinish. “Data Visualization: The End
of the Rainbow.” IEEE Spectrum 35:12 (1998), 52–59. Alternate version published online as Why
Should Engineers and Scientists Be Worried about Color?, http://www.research.ibm.com/people/l/
lloydt/color/color.HTM. (pages 233, 240)

[Saraiya et al. 05] Purvi Saraiya, Chris North, and Karen Duca. “An Insight-Based Methodology for Eval-
uating Bioinformatics Visualizations.” IEEE Transactions on Visualization and Computer Graphics
(TVCG) 11:4 (2005), 443–456. (page 78)

[Scarr et al. 13] Joey Scarr, Andy Cockburn, and Carl Gutwin. “Supporting and Exploiting Spatial Mem-
ory in User Interfaces.” Foundations and Trends in HumanComputer Interaction 6 (2013), Article
no. 1. (page 141)

[Schroeder and Martin 05] William J. Schroeder and Kenneth M. Martin. “Overview of Visualization.”
In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 3–39.
Elsevier, 2005. (page 197)

[Schroeder et al. 06] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics, Fourth edition. Pearson, 2006. (pages xvii, 40)

[Schulz et al. 11] Hans-Jörg Schulz, Steffen Hadlak, and Heidrun Schumann. “The Design Space of Im-
plicit Hierarchy Visualization: A Survey.” IEEE Transactions on Visualization and Computer Graphics
17:4 (2011), 393–411. (page 217)

[Schulz 11] Hans-Jörg Schulz. “Treevis.net: A Tree Visualization Reference.” IEEE Computer Graphics
and Applications 31:6 (2011), 11–15. (page 216)

[Sedlmair et al. 12] Michael Sedlmair, Miriah Meyer, and Tamara Munzner. “Design Study Methodology:
Reflections from the Trenches and the Stacks.” IEEE Transactions on Visualization and Computer
Graphics (Proc. InfoVis 12) 18:12 (2012), 2431–2440. (pages 19, 92)

[Sedlmair et al. 13] Michael Sedlmair, Tamara Munzner, and Melanie Tory. “Empirical Guidance on
Scatterplot and Dimension Reduction Technique Choices.” IEEE Transactions on Visualization and
Computer Graphics (Proc. InfoVis 13) 19:12 (2013), 2634–2643. (pages 320, 321)

[Seo and Shneiderman 02] Jinwook Seo and Ben Shneiderman. “Interactively Exploring Hierarchical
Clustering Results.” IEEE Computer 35:7 (2002), 80–86. (pages 341, 351, 352, 367)

[Seo and Shneiderman 05] Jinwook Seo and Ben Shneiderman. “A Rank-by-Feature Framework for
Interactive Exploration of Multidimensional Data.” Information Visualization 4:2 (2005), 96–113.
(pages 340, 341, 351, 353, 354, 367)

[Sharp et al. 07] Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design: Beyond Human-
Computer Interaction. Wiley, 2007. (page 92)

[Shirley and Marschner 09] Peter Shirley and Steve Marschner. Fundamentals of Computer Graphics,
Third edition. A K Peters, 2009. (page xxi)

390 Bibliography

[Shneiderman and Plaisant 06] Ben Shneiderman and Catherine Plaisant. “Strategies for Evaluating
Information Visualization Tools: Multi-dimensional In-Depth Long-Term Case Studies.” In Pro-
ceedings of the AVI Workshop on BEyond time and errors: novel evaLuation methods for Information
Visualization (BELIV), Article no. 6. ACM, 2006. (page 92)

[Shneiderman 96] Ben Shneiderman. “The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations.” In Proceedings of the IEEE Conference on Visual Languages, pp. 336–343. IEEE
Computer Society, 1996. (pages 40, 135, 142)

[Simons 00] Daniel J. Simons. “Current Approaches to Change Blindness.” Visual Cognition 7:1/2/3
(2000), 1–15. (pages 15, 19, 142)

[Sinha and Meller 07] Amit Sinha and Jaroslaw Meller. “Cinteny: Flexible Analysis and Visualization of
Synteny and Genome Rearrangements in Multiple Organisms.” BMC Bioinformatics 8:1 (2007), 82.
(page 228)

[Slack et al. 06] James Slack, Kristian Hildebrand, and Tamara Munzner. “PRISAD: Partitioned Ren-
dering Infrastructure for Scalable Accordion Drawing (Extended Version).” Information Visualization
5:2 (2006), 137–151. (pages 332, 332, 338)

[Slingsby et al. 09] Adrian Slingsby, Jason Dykes, and Jo Wood. “Configuring Hierarchical Layouts to
Address Research Questions.” IEEE Transactions on Visualization and Computer Graphics (Proc.
InfoVis 09) 15:6 (2009), 977–984. (pages 286, 287, 296)

[Slocum et al. 08] Terry A. Slocum, Robert B. McMaster, Fritz C. Kessler, and Hugh H. Howard. Thematic
Cartography and Geovisualization, Third edition. Prentice Hall, 2008. (page 197)

[Spence and Apperley 82] Robert Spence and Mark Apperley. “Data Base Navigation: An Office Envi-
ronment for the Professional.” Behaviour and Information Technology 1:1 (1982), 43–54. (page
337)

[Spence 07] Robert Spence. Information Visualization: Design for Interaction, Second edition. Prentice
Hall, 2007. (page xvii)

[Springmeyer et al. 92] Rebecca R. Springmeyer, Meera M. Blattner, and Nelson L. Max. “A Characteriza-
tion of the Scientific Data Analysis Process.” In Proceedings of the IEEE Conference on Visualization
(Vis), pp. 235–252. IEEE Computer Society, 1992. (page 64)

[St. John et al. 01] Mark St. John, Michael B. Cowen, Harvey S. Smallman, and Heather M. Oonk. “The
Use of 2-D and 3-D Displays for Shape Understanding versus Relative Position Tasks.” Human
Factors 43:1 (2001), 79–98. (pages 119, 119, 124, 129, 141)

[Steinberger et al. 11] Markus Steinberger, Manuela Waldner, Marc Streit, Alexander Lex, and Dieter
Schmalstieg. “Context-Preserving Visual Links.” IEEE Transactions on Visualization and Computer
Graphics (Proc. InfoVis 11) 17:12 (2011), 2249–2258. (page 253, 253)

[Stevens 46] S. S. Stevens. “On the Theory of Scales of Measurement.” Science 103:2684 (1946), 677–
680. (pages 33, 40)

[Stevens 57] S. S. Stevens. “On the Psychophysical Law.” Psychological Review 64:3 (1957), 153–181.
(pages 115, 118)

Bibliography 391

[Stevens 75] S. S. Stevens. Psychophysics: Introduction to Its Perceptual, Neural, and Social Prospects.
Wiley, 1975. (pages 103, 104, 115)

[Stolte et al. 02] Chris Stolte, Diane Tang, and Pat Hanrahan. “Multiscale Visualization Using Data
Cubes.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 176–187.
IEEE Computer Society, 2002. (page 40)

[Stone 03] Maureen Stone. A Field Guide to Digital Color. A K Peters, 2003. (page 240)

[Stone 06] Maureen Stone. “Color in Information Display.” IEEE Visualization Course Notes, 2006.
http://www.stonesc.com/Vis06. (page 221)

[Stone 10] Maureen Stone. “Get It Right in Black and White.” Functional Color, http://www.stonesc.
com/wordpress/2010/03/get-it-right-in-black-and-white, 2010. (pages 140, 142, 240, 289, 290,
296, 373)

[Telea 07] Alexandru Telea. Data Visualization: Principles and Practice. A K Peters, 2007. (pages xvii,
40, 92)

[Torgerson 52] W. S. Torgerson. “Multidimensional Scaling: I. Theory and Method.” Psychometrika 17
(1952), 401–419. (page 321)

[Tory and Möller 04a] Melanie Tory and Torsten Möller. “Human Factors in Visualization Research.”
IEEE Transactions on Visualization and Computer Graphics (TVCG) 10:1 (2004), 72–84. (page 40)

[Tory and Möller 04b] Melanie Tory and Torsten Möller. “Rethinking Visualization: A High-Level Taxon-
omy.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 151–158.
IEEE Computer Society, 2004. (page 65)

[Tory and Möller 05] Melanie Tory and Torsten Möller. “Evaluating Visualizations: Do Expert Reviews
Work?” IEEE Computer Graphics and Applications 25:5 (2005), 8–11. (page 78)

[Tory et al. 07] Melanie Tory, David W. Sprague, Fuqu Wu, Wing Yan So, and Tamara Munzner. “Spa-
tialization Design: Comparing Points and Landscapes.” IEEE Transactions on Visualization and
Computer Graphics (Proc. InfoVis 07) 13:6 (2007), 1262–1269. (pages 129, 130, 130)

[Tory et al. 09] Melanie Tory, Colin Swindells, and Rebecca Dreezer. “Comparing Dot and Landscape
Spatializations for Visual Memory Differences.” IEEE Transactions on Visualization and Computer
Graphics (Proc. InfoVis 09) 16:6 (2009), 1033–1040. (page 130)

[Treisman and Gormican 88] Anne Treisman and Stephen Gormican. “Feature Analysis in Early Vision:
Evidence from Search Asymmetries.” Psychological Review 95:1 (1988), 15–48. (page 115)

[Tricoche et al. 02] Xavier Tricoche, Thomas Wischgoll, Gerik Scheuermann, and Hans Hagen. “Topol-
ogy Tracking for the Visualization of Time-Dependent Two-Dimensional Flows.” Computers & Graph-
ics 26:2 (2002), 249–257. (page 189)

[Tufte 83] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983. (pages
xvi, 19)

[Tufte 91] Edward Tufte. Envisioning Information. Graphics Press, 1991. (page xvi, xvi)

[Tufte 97] Edward R. Tufte. Visual Explanations. Graphics Press, 1997. (page xvi)

[Tukey 77] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977. (page 320)

392 Bibliography

[Tversky et al. 02] Barbara Tversky, Julie Morrison, and Mireille Betrancourt. “Animation: Can It Facil-
itate?” International Journal of Human Computer Studies 57:4 (2002), 247–262. (page 141)

[van Ham and Perer 09] Frank van Ham and Adam Perer. “Search, Show Context, Expand on Demand:
Supporting Large Graph Exploration with Degree-of-Interest.” IEEE Transactions on Visualization
and Computer Graphics (Proc. InfoVis 09) 15:6 (2009), 953–960. (page 137)

[van Ham 03] Frank van Ham. “Using Multilevel Call Matrices in Large Software Projects.” In Proceed-
ings of the IEEE Symposium on Information Visualization (InfoVis), pp. 227–232. IEEE Computer
Society, 2003. (page 249)

[van Wijk and Nuij 03] Jarke J. van Wijk and Wim A. A. Nuij. “Smooth and Efficient Zooming and
Panning.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 15–22.
IEEE Computer Society, 2003. (page 262)

[van Wijk and van Liere 93] Jarke J. van Wijk and Robert van Liere. “HyperSlice: Visualization of Scalar
Functions of Many Variables.” In Proceedings of the IEEE Conference on Visualization (Vis), pp. 119–
125. IEEE Computer Society, 1993. (pages 259, 260)

[van Wijk and van Selow 99] Jarke J. van Wijk and Edward R. van Selow. “Cluster and Calendar Based
Visualization of Time Series Data.” In Proceedings of the IEEE Symposium on Information Visualiza-
tion (InfoVis), pp. 4–9. IEEE Computer Society, 1999. (pages 125, 126)

[van Wijk 06] Jarke J. van Wijk. “Bridging the Gaps.” IEEE Computer Graphics & Applications 26:6
(2006), 6–9. (page 65)

[Velleman and Wilkinson 93] Paul F. Velleman and Leland Wilkinson. “Nominal, Ordinal, Interval, and
Ratio Typologies Are Misleading.” The American Statistician 47:1 (1993), 65–72. (page 65)

[Vilanova et al. 06] A. Vilanova, S. Zhang, G. Kindlmann, and D. Laidlaw. “An Introduction to Visual-
ization of Diffusion Tensor Imaging and Its Applications.” In Visualization and Processing of Tensor
Fields, pp. 121–153. Springer, 2006. (page 198)

[von Landesberger et al. 11] Tatiana von Landesberger, Arjan Kuijper, Tobias Schreck, Jörn Kohlham-
mer, Jarke J. van Wijk, Jean-Daniel Fekete, and Dieter W. Fellner. “Visual Analysis of Large Graphs:
State-of-the-Art and Future Research Challenges.” Computer Graphics Forum 30:6 (2011), 1719–
1749. (page 216)

[Wainer and Francolini 80] Howard Wainer and Carl M. Francolini. “An Empirical Inquiry Concerning
Human Understanding of Two-Variable Color Maps.” The American Statistician 34:2 (1980), 81–93.
(pages 235, 240)

[Ward et al. 10] Matthew O. Ward, Georges Grinstein, and Daniel Keim. Interactive Data Visualization:
Foundations, Techniques, and Applications. A K Peters, 2010. (pages xvii, 40, 92)

[Ward 02] Matthew O. Ward. “A Taxonomy of Glyph Placement Strategies for Multidimensional Data
Visualization.” Information Visualization 1:3-4 (2002), 194–210. (page 296)

[Ward 08] Matthew O. Ward. “Multivariate Data Glyphs: Principles and Practice.” In Handbook of Data
Visualization, Computational Statistics, edited by Antony Unwin, Chun-houh Chen, and Wolfgang K.
Härdle, pp. 179–198. Springer, 2008. (page 296)

Bibliography 393

[Ware and Bobrow 04] Colin Ware and Robert Bobrow. “Motion to Support Rapid Interactive Queries on
Node–Link Diagrams.” Transactions on Applied Perception (TAP) 1:1 (2004), 3–18. (pages 241, 252)

[Ware 01] Colin Ware. “Designing with a 2 1/2 D Attitude.” Information Design Journal 10:3 (2001),
255–262. (page 125)

[Ware 08] Colin Ware. Visual Thinking for Design. Morgan Kaufmann, 2008. (pages xvi, 115, 119, 119,
141)

[Ware 13] Colin Ware. Information Visualization: Perception for Design, Third edition. Morgan Kaufmann,
2013. (pages xvi, 19, 108, 115, 115, 141, 141, 223, 223, 223, 240, 241, 296)

[Wattenberg and Viegas 08] Martin Wattenberg and Fernanda B. Viegas. “The Word Tree, an Interactive
Visual Concordance.” IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 08)
14:6 (2008), 1221–1228. (pages 71, 72)

[Wattenberg 05] Martin Wattenberg. “Baby Names, Visualization, and Social Data Analysis.” In Proceed-
ings of the IEEE Symposium on Information Visualization (InfoVis), pp. 1–7. IEEE Computer Society,
2005. (pages 48, 49)

[Wattenberg 06] Martin Wattenberg. “Visual Exploration of Multivariate Graphs.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 811–819. ACM, 2006. DOI
10.1145/1124772.1124891. (pages 340, 341, 355, 356, 357, 367, 374, 374)

[Weaver 04] Chris Weaver. “Building Highly-Coordinated Visualizations in Improvise.” In Proceedings of
the IEEE Symposium on Information Visualization (InfoVis), pp. 159–166. IEEE Computer Society,
2004. (pages 277, 296)

[Weaver 10] Chris Weaver. “Cross-Filtered Views for Multidimensional Visual Analysis.” IEEE Transac-
tions on Visualization and Computer Graphics 16:2 (2010), 192–204. (page 296)

[Wegman 90] Edward J. Wegman. “Hyperdimensional Data Analysis Using Parallel Coordinates.” Jour-
nal of the American Statistical Association (JASA) 85:411 (1990), 664–675. (pages 164, 176)

[Weickert and Hagen 06] Joachim Weickert and Hans Hagen, editors. Visualization and Processing of
Tensor Fields. Springer, 2006. (page 198)

[Weiskopf and Erlebacher 05] Daniel Weiskopf and Gordon Erlebacher. “Overview of Flow Visualization.”
In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 261–278.
Elsevier, 2005. (page 198)

[Wickham and Hofmann 11] Hadley Wickham and Heike Hofmann. “Product Plots.” IEEE Transactions
on Visualization and Computer Graphics (Proc. InfoVis 11) 17:12 (2011), 2223–2230. (page 175)

[Wickham and Stryjewski 12] Hadley Wickham and Lisa Stryjewski. “40 Years of Boxplots.” Technical
report, had.co.nz, 2012. (pages 309, 320)

[Wickham et al. 12] Hadley Wickham, Heike Hofmann, Charlotte Wickham, and Diane Cook. “Glyph-
Maps for Visually Exploring Temporal Patterns in Climate Data and Models.” Environmetrics 23:5
(2012), 382–393. (pages 170, 171)

[Wickham 10] Hadley Wickham. “A Layered Grammar of Graphics.” Journal of Computational and Graph-
ical Statistics 19:1 (2010), 3–28. (pages 148, 167, 168)

394 Bibliography

[Wilkinson and Friendly 09] Leland Wilkinson and Michael Friendly. “The History of the Cluster Heat
Map.” The American Statistician 63:2 (2009), 179–184. (page 176)

[Wilkinson and Wills 08] Leland Wilkinson and Graham Wills. “Scagnostics Distributions.” Journal of
Computational and Graphical Statistics (JCGS) 17:2 (2008), 473–491. (pages 345, 366)

[Wilkinson et al. 05] Leland Wilkinson, Anushka Anand, and Robert Grossman. “Graph-Theoretic Scag-
nostics.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 157–164.
IEEE Computer Society, 2005. (pages 340, 341, 342, 343, 346, 366)

[Wilkinson et al. 06] Leland Wilkinson, Anushka Anand, and Robert Grossman. “High-Dimensional Vi-
sual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions.” IEEE
Transactions on Visualization and Computer Graphics 12:6 (2006), 1363–1372. (pages 341, 342)

[Wilkinson 99] Leland Wilkinson. “Dot Plots.” The American Statistician 53:3 (1999), 276–281. (page
155)

[Wilkinson 05] Leland Wilkinson. The Grammar of Graphics, Second edition. Springer, 2005. (pages xvii,
40, 175)

[Willett et al. 07] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. “Scented Widgets: Improving
Navigation Cues with Embedded Visualizations.” IEEE Transactions on Visualization and Computer
Graphics (Proc. InfoVis 07) 13:6 (2007), 1129–1136. (pages 303, 303, 320)

[Williams 08] Robin Williams. The Non-Designer’s Design Book, Third edition. Peachpit Press, 2008.
(page 142)

[Wills 95] Graham J. Wills. “Visual Exploration of Large Structured Datasets.” In Proceedings of New
Techniques and Trends in Statistics (NTTS), pp. 237–246. IOS Press, 1995. (page 268, 268, 268)

[Wills 96] Graham J. Wills. “Selection: 524,288 Ways to Say ‘This Is Interesting’.” In Proceedings of the
IEEE Symposium on Information Visualization (InfoVis), pp. 54–61. IEEE Computer Society, 1996.
(page 262)

[Wills 08] Graham J. Wills. “Linked Data Views.” In Handbook of Data Visualization, Computational
Statistics, edited by Antony Unwin, Chun-houh Chen, and Wolfgang K. Härdle, pp. 216–241.
Springer, 2008. (page 296)

[Wise et al. 95] J. A. Wise, J.J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur, and V. Crow.
“Visualizing the Non-Visual: Spatial Analysis and Interaction with Information from Text Docu-
ments.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 51–58.
IEEE Computer Society, 1995. (page 130)

[Wong 09] David Wong. “The Modifiable Areal Unit Problem (MAUP).” In The SAGE Handbook of Spatial
Analysis, edited by A. Stewart Fotheringham and Peter A. Rogerson, pp. 105–123. Sage, 2009. (page
321)

[Wood and Dykes 08] Jo Wood and Jason Dykes. “Spatially Ordered Treemaps.” IEEE Transactions on
Visualization and Computer Graphics (Proc. InfoVis 08) 14:6 (2008), 1348–1355. (pages 288, 296)

[Yang et al. 02] Jing Yang, Matthew O. Ward, and Elke A. Rundensteiner. “InterRing: An Interactive
Tool for Visually Navigating and Manipulating Hierarchical Structures.” In Proceedings of the IEEE
Symposium on Information Visualization (InfoVis), pp. 77–84. IEEE Computer Society, 2002. (pages
340, 341, 358, 359, 367)

Bibliography 395

[Yang et al. 03a] Jing Yang, Wei Peng, Matthew O. Ward, and Elke A. Rundensteiner. “Interactive Hier-
archical Dimension Ordering, Spacing and Filtering for Exploration of High Dimensional Datasets.”
In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 105–112. IEEE
Computer Society, 2003. (pages 304, 304, 321)

[Yang et al. 03b] Jing Yang, Matthew O. Ward, Elke A. Rundensteiner, and Shiping Huang. “Visual
Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets.” In Proceedings
of the Eurographics/IEEE Symposium on Visualization (VisSym), pp. 19–28. Eurographics, 2003.
(page 321)

[Yang et al. 04] Jing Yang, Anilkumar Patro, Shiping Huang, Nishant Mehta, Matthew O. Ward, and
Elke A. Rundensteiner. “Value and Relation Display for Interactive Exploration of High Dimensional
Datasets.” In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 73–80.
IEEE Computer Society, 2004. (page 321)

[Yi et al. 07] Ji Soo Yi, Youn Ah Kang, John T. Stasko, and Julie A. Jacko. “Toward a Deeper Under-
standing of the Role of Interaction in Information Visualization.” IEEE Transactions on Visualization
and Computer Graphics (Proc. InfoVis 07) 13:6 (2007), 1224–1231. (page 142)

[Young and Householder 38] G. Young and A. S. Householder. “Discussion of a Set of Points in Terms
of Their Mutual Distances.” Psychometrika 3:1. (page 321)

[Zacks and Tversky 99] Jeff Zacks and Barbara Tversky. “Bars and Lines: A Study of Graphic Commu-
nication.” Memory and Cognition 27:6 (1999), 1073–1079. (pages 156, 157, 175)

[Zacks and Tversky 03] Jeffrey M. Zacks and Barbara Tversky. “Structuring Information Interfaces for
Procedural Learning.” Journal of Experimental Psychology: Applied 9:2 (2003), 88–100. (page 141)

[Zhang and Norman 95] Jiajie Zhang and Donald A. Norman. “A Representational Analysis of Numera-
tion Systems.” Cognition 57 (1995), 271–295. (page 19)

[Zhang 97] Jiajie Zhang. “The Nature of External Representations in Problem Solving.” Cognitive Science
21:2 (1997), 179–217. (page 19)

[Zuk et al. 08] Torre Zuk, Lothar Schlesier, Petra Neumann, Mark S. Hancock, and Sheelagh Carpen-
dale. “Heuristics for Information Visualization Evaluation.” In Proceedings of the AVI Workshop
on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV), Article
no. 9. ACM, 2008. (page 78)

This page intentionally left blankThis page intentionally left blank

Visualization
Analysis & Design
Tamara Munzner

A K Peters Visualization Series

Illustrations by Eamonn MaguireVisualization/Human–Computer Interaction/Computer Graphics

“A must read for researchers, sophisticated
practitioners, and graduate students.”
—Jim Foley, College of Computing, Georgia Institute of Technology
Author of Computer Graphics: Principles and Practice

“Munzner’s new book is thorough and beautiful. It
belongs on the shelf of anyone touched and enriched by
visualization.”
—Chris Johnson, Scientific Computing and Imaging Institute,
University of Utah

“This is the visualization textbook I have long awaited.
It emphasizes abstraction, design principles, and the
importance of evaluation
and interactivity.”
—Jim Hollan, Department of Cognitive Science,
University of California, San Diego

“Munzner is one of the world’s very top researchers in
information visualization, and this meticulously crafted
volume is probably the most thoughtful and deep
synthesis the field has yet seen.”
—Michael McGuffin, Department of Software and IT Engineering,
École de Technologie Supérieure

“Munzner elegantly synthesizes an astounding amount of
cutting-edge work on visualization into a clear, engaging,
and comprehensive textbook that will prove indispensable
to students, designers, and researchers.”
—Steven Franconeri, Department of Psychology,
Northwestern University

“Munzner shares her deep insights in visualization with us
in this excellent textbook, equally useful for students and
experts in the field.”
—Jarke van Wijk, Department of Mathematics and Computer Science,
Eindhoven University of Technology

“The book shapes the field of visualization in an
unprecedented way.”
—Wolfgang Aigner, Institute for Creative Media Technologies,
St. Pölten University of Applied Sciences

“This book provides the most comprehensive coverage of
the fundamentals of visualization design that I have found.
It is a much-needed and long-awaited resource for both
teachers and practitioners of visualization.”
—Kwan-Liu Ma, Department of Computer Science,
University of California, Davis

This book’s unified approach encompasses information
visualization techniques for abstract data, scientific
visualization techniques for spatial data, and
visual analytics techniques for interweaving data
transformation and analysis with interactive visual
exploration. Suitable for both beginners and more
experienced designers, the book does not assume any
experience with programming, mathematics, human–
computer interaction, or graphic design.

K14708

WITH VITALSOURCE®

EBOOK

A N A K P E T E R S B O O K

• Access online or download to your smartphone, tablet
or PC/Mac

• Search the full text of this and other titles you own
• Make and share notes and highlights
• Copy and paste text and figures for use in your own

documents
• Customize your view by changing font size and layout

	Front Cover
	Contents
	Preface
	1. What’s Vis, and Why Do It?
	2. What: Data Abstraction
	3. Why: Task Abstraction
	4. Analysis: Four Levels for Validation
	5. Marks and Channels
	6. Rules of Thumb
	7. Arrange Tables
	8. Arrange Spatial Data
	9. Arrange Networks and Trees
	10. Map Color and Other Channels
	11. Manipulate View
	12. Facet into Multiple Views
	13. Reduce Items and Attributes
	14. Embed: Focus+Context
	15. Analysis Case Studies
	Figure Credits
	Bibliography

