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Abstract—By allowing to conduct experiments involving eco-
logically valid tasks within controlled environments, Virtual Real-
ity (VR) offers novel opportunities for studying human behavior.
Several modalities can be leveraged, including event logs, motion
trajectories, eye-tracking data, or physiological signals. However,
analyzing such multimodal data presents considerable challenges
due to their inherent complexity, the varied structures they imply,
as well as the necessity to use exploratory approaches. There is
therefore a need to design visual analytics tools for the exploration
of immersive behavioral data without prior knowledge. Our idea
is to integrate deep learned computational models —which lever-
age advanced techniques to extract valuable high-level features
from unlabeled data— into exploratory Visual Analytics tools. We
introduce a conceptual framework for integrating deep learning
models into the Visual Analytics process of immersive behavioral
data analysis, also focusing on the services that such systems
should provide to the analysts.

Index Terms—Visual Analytics, Immersive Behavior Analysis,
Self-supervised Learning, Deep Representation Space

I. INTRODUCTION

New approaches for the study of human behavior are made
possible by VR; indeed, it allows setting up rich and complex
experiments while maintaining control and repeatability over
the scenario, and to compare behaviors recorded from different
users in the same virtual environment.

Several works have shown the interest of analyzing immer-
sive data to study human behaviors from different perspectives.
For example, we developed a virtual kitchen (figure 1) as
a tool that allows psychologists to understand and compare
the behavioral patterns exhibited by individuals [1]. The
work from Yuan et al. [2] examined the influence of spatial
configurations of exhibits on visitors’ explicit reactions. A
study from Yaremych et al. made use of a virtual buffet
to analyze the behavior of parents preparing meals for their
children, exploring micro-behaviors and emphasizing the need
to explore behaviors at different temporal scales [3].

Moreover, VR makes it possible to easily record behavioral
data that was very difficult to collect in reality. This temporal
data, referred to hereafter as immersive behavioral data, com-

Fig. 1. A participant of a virtual kitchen pours egg yolks into a preparation.
Analyzing this action and others may be of use to an analyst trying to assess
issues with cognitive functions, e.g., planning.

prises several modalities, such as trajectories of limbs, event
logs, eye-tracking measures, or physiological signals.

There are at least three challenges related to analyzing such
data. First, the recording of behaviors with (relatively) high
sample rate generates a large amount of data that is difficult for
humans to handle (even with a single modality). Visualization
tools can help when the analyst needs to deal with few
participants’ data, but the combination of a high sample rate
and large number of participants makes the visual analysis of
such data very challenging. Second, the plurality of modali-
ties, their different structures, and the complex relationships
between them, make the analysis even more challenging. This
is amplified by the difference in the density of information
provided by each modality. For instance, while the event log
modality offers valuable qualitative insights, it is considerably
sparser than the spatio-temporal modality. Third, as such type
of behavioral data is new, and should allow uncovering new
qualitative and quantitative insights on human behavior, it has
to be analyzed in exploratory ways.

Exploratory data analysis falls within the scope of Visual
Analytics [4], [5], which seeks to make the best use of
human capabilities (e.g, visual pattern recognition, intuition
from domain knowledge) and those of computers (e.g. massive
data management, model building) to build up new knowledge.



With respect to our third challenge, it seems that visual analyt-
ics tools are needed to help analysts make sense of immersive
behavioral data while overcoming the other two challenges.
The iterative process of knowledge construction on exploratory
tasks has been widely studied [4], [5]. Notably, Brehmer
and Munzner proposed a multi-level typology describing the
different interactions taking place between the analyst and a
visual analytics system [6].

Deep learning has proven to be a suitable approach for
the automated building of computational models from both
massive and multimodal data, be it in a supervised [7]–[10]
or unsupervised [7], [11] ways. As our concern is exploratory
analysis we cannot provide labeled data to a supervised ma-
chine learning model. It is then our proposal to try and leverage
deep self-supervised learning to develop computational models
of immersive behavioral data that could be used in visual
analytics systems.

In this paper, we first introduce our general proposal to
incorporate a deep learned representation of immersive be-
havioral data into visual analytics systems, so that analysts
can make use of such models to carry out their exploratory
tasks. Our second contribution is a conceptual framework that
describes in more details the behavioral data, the generated
latent space, and the services provided to an analyst using
such a deep learning based visual analytics system.

II. OUR CONCEPTUAL FRAMEWORK

The framework we propose encompasses the concepts de-
scribed in the framework proposed by Sacha et al. [4], our
main modification being that we introduce a deep learning
based latent representation of data as an intermediary between
the data and the interpretable models (Fig. 2)

This representation space is based on the processing of
the entire dataset to generate a model of the data, leveraging
deep learning capacities to produce a rich, yet not directly
interpretable, representation. This is why such a deep learned
representation must be translated into various interpretable
models that can then be presented to analysts, depending on
their needs.

Figure 2 details several of the components of the proposed
enriched visual analytics process: the general structure of
immersive behavioral data (“Data” component), the generated
latent space (“Latent Space” component) and how it is gener-
ated (gray arrow from “Data” to “Latent Space”), as well as
the services that should be provided to an analyst using such
a system.

A. Structure of immersive behavioral data

We define a trace as the set of all immersive behavioral data
recorded during a session. It is composed of two distinct types
of data: metadata and temporal data from various modalities.

While metadata provides contextual information about an
immersive session (e.g., age of participants), temporal data
includes information such as the spatial trajectory of limbs,
event logs or physiological signals, etc. Each piece of temporal
data recorded is associated with a timestamp. Temporal data

Fig. 2. The visual analytics conceptual model of Sacha et al [4] completed
with a latent space, and some interactions between the analyst and the system
(blue arrows) or their construction process (blue dashed arrows). The analyst
generates findings by observing the models and visualizations (red arrows).

can be associated to one of the three modalities presented
in figure 3 . Spatial data usually correspond to position and
rotation of a user’s limb. Event logs are collected at a given
timestamp and are composed of multiple attributes. Actor is
the entity that is responsible for the realization of the event
(e.g. a user, or the system if the event is self-generated). Verb is
a lexical item that denotes an action or a process (e.g., “grab”).
Object is the entity upon which the action is performed. For
example, an object associated to the verb “grab”, could be
the virtual object (e.g., “Butter”). Properties correspond to
information that complete the description of the event (e.g.,
“with: leftHand”). An Event Type is a generic way to describe
event logs, for instance : “Event Logs that are linked with
the Butter object”, or “Events Logs that are emitted by the
system”.

Fig. 3. A possible structure of immersive behavioral data which can be used
to build a deep learning model.

All the data structures on which the deep learning model
is built correspond to a vocabulary that is shared with the
analyst. Yet, analysts always have a broader understanding
of immersive behavior, which allows them to understand and
manipulate data in ways a deep learning algorithm was not
designed to address (dashed rectangles in figure 3). That is
why various structures can be derived from the data, that may
be of help to the analyst, yet unknown to the deep learning



algorithm. For instance, the algorithm may have been trained
to handle spatial coordinates, but an analyst could have an
intuitive understanding of situated 3D regions in the immersive
environment (i.e. voxels, see figure 3). Another example could
be that of a sub-trace, defined as the set of all the immersive
behavioral data recorded between two timestamps during an
immersive session. Such notion is flexible enough to cover the
analysis of gestures (few seconds), tasks (few minutes) or even
complete activities (up to hours).

B. Latent space

Deep Learning techniques enable the extraction of high-
level features from complex data, including immersive behav-
ioral data, without labels. Despite particularities inherent to the
choice of the architecture, deep learning models yield vector-
ized representations of individual data elements. The latent
space is the aggregation of these vectorized representations.

The latent space we are considering in our framework is
the result of the training of a self-supervised algorithm on
pseudo-tasks related to immersive behavioral data. Training
on pseudo-tasks makes it possible to address the lack of
labeled data by inferring higher-level knowledge about the
data’s inherent structure. For instance, a pseudo-task could
be to reorder a sequence that has been previously shuffled.
The definition of the pseudo-tasks is the main constraint that
affects the structure of the produced latent space. Therefore,
the behavioral assumptions used to define the pseudo-tasks
have an influence on the structure of the latent representation
space that will be built.

Here are a few examples of pseudo tasks used for self-
supervised pre-training of deep learning models to improve
their final performance on predictive supervised tasks. Tempo-
ral coherence considers the behavior of a user to be consistent
over short periods of time [12]–[14]. User coherence considers
that the behavior of a user has some similarity over time. This
hypothesis is used especially in the field of user identifica-
tion [15]–[17]. Spatial independence considers that behaviors
are unrelated to the locations where they were recorded [12],
[18], [19]. On the opposite, spatial coherence considers that
behaviors are related to the location where they were recorded.
This last assumption is supported by multiple visual analytics
tools that enable exploring immersive data from environments
that are more conducive to interactions [20]–[25]. However, to
the best of our knowledge, no deep learning model has used
it to constrain the training of their model.

C. Example scenario and related concepts

Besides the “classical” services it can offer to the analyst,
a latent space-based visual analytics system can leverage the
latent space to facilitate the exploration of the dataset.

In the remainder of this section we define a few concepts
(namely, service, query, context, and object of interest) de-
scribing the process of an analyst making use of the latent
space to explore the data to gain insights (see fig. 2).

Let us first remark that our approach is designed for analysts
that are not introduced to deep learning concepts. Therefore,

we consider the training of the deep learning model and the
projection of the data into the latent representation space to
have taken place prior to the exploration. This means that
the analyst is not allowed to influence the meta-parameters
(number of layers, decay of the learning rate etc.) of the deep
learning model, nor to interact directly with the generated
latent representation space.

Scenario. A short scenario describing how Ms. D., an
analyst, explores immersive behavioral data may help to
introduce our concepts. At the start of her exploration, Ms.
D. faces the whole dataset and has no idea where to start.
The system offers a few services, and she chooses “explore
similar behaviors”. This choice is translated by the system into
a query which is processed to produce a list of 5 groups of
sub-traces deemed similar in regard to behaviors. Each group
is presented as a set of trajectories superposed to the map of
the virtual environment. The second group G2, which appears
to be related to a behaviors happening in a same place seems
interesting, but there are too many of them, and Ms. D. cannot
really make sense of it.

Therefore, she continues her exploration from all the sub-
traces of group 2, and asks to be shown the associated proto-
types, i.e., the best representative sub-traces. 7 of them are then
presented with the associated heads and hands trajectories, that
she can easily look at. One of them is intriguing because one
of the hand trajectory reaches the ground. By looking to the
associated events, she notices that an object has been dropped
before. Looking at the sub-traces associated to the prototype,
she sees that many of them also contain a drop event, and
it seems that some users tend to unintentionally drop objects
around this place in the environment.

But are there any other places where objects would also be
dropped? She selects the “show me associated places” service
on the prototype sub-traces, precising that she is interested in
the “Drop” event type only. She is then shown with a map of
the places where the sub-traces corresponding to this criterion
occur, that she can further explore, etc.

Definitions. Analysts ask the system for services, in various
contexts, for different objects of interest. The services translate
into queries that create and make use of interpretable models.
An interpretable model is a model of immersive behavioral
data that is understandable by the analyst, because it is
directly related to understandable raw data. For example, in
our scenario, the 5 clusters of similar trajectories is the first
model that is interpreted and explored by the analyst. The
7 further subgroups of G2 correspond to a second model,
which is presented throughout the associated prototypes. A
latent space-based service is a service offered by the system
that makes use of the latent space to generate an interpretable
model, which can either be directly or indirectly (after further
transformation) explored by the user. A service can have pa-
rameters. For instance, in our scenario, the clustering algorithm
used to generate groups of sub-traces sharing similar behavior
has a parameter to limit to 5 the number of groups generated.

Two notions can be of use to further specify a service. The
context is the subset of the data that the analyst is currently



TABLE I
OVERVIEW OF THE KEY SERVICES AND RESULTS ({object} REFERS TO A SET OF objects).

Intent Object(s) of interest Service description Result
Explore Show singular behaviors in context {sub-trace}
Summarize Cluster behaviors into groups groups of {sub-trace}
Summarize Show the most representative behaviors {sub-trace}
Locate Sub-trace Show similar behaviors in context {sub-trace}
Identify Sub-trace Identify timespans best representing this behavior {timespan}
Summarize User Cluster users according to their behavior {user}
Browse Voxel Show behaviors that are specific to this voxel {sub-trace}
Summarize Voxel Cluster voxels according to the behavior they contain groups of {voxel}
Locate Event type Locate behaviors most influenced by this event type {sub-trace}
Compare Sub-trace Sub-trace Show the similarities between these sub-traces {timespan} per user
Explore Sub-trace Voxel Show voxels that contain similar behaviors {voxel}

engaged with. For example, in our scenario, the context of
exploration evolves when the analyst focuses on G2, the
second group. An object of interest is the reference object upon
which the service is specified. For instance, in our scenario:
the prototype sub-trace is used as a reference object to induce
a specific behavior search.

A query is the translation of a service into low-level
prompts. Among these prompts are those that 1/ translate
the service and its parameters into inputs for an algorithm
exploiting the latent representation space, 2/ translate the
output of such algorithm into an interpretable model, 3/ specify
the way under which the resulting model will be presented to
the analyst. For example, for the “show prototypes” service
in our scenario, a prompt 1/ mobilized a clustering algorithm
with G2 context, 2/ translated clusters from the latent space
into 7 clusters of sub-traces, and 3/ extracted a prototype for
each cluster, so that it could be shown. In figure 2, the first
two prompts correspond to the “model building” arrow. The
others are either related to model usage or model-vis mapping.

D. Latent space-based services for visual analytics of immer-
sive behavioral data

Let us now describe what services can be offered by
building on the intents proposed in [6]. First, search refers
to the intent of finding interesting elements in the data, for
known or unknown target (what is searched) and location
(where it is in the data). Lookup is then when the analyst
knows both the target and the location, explore neither the
target nor the location, while browse corresponds to looking
at unknown pieces of data in a known location, and locate
to finding the location of known data. Second, query refers
to further analysis of found element(s): identify consists in
looking at supplementary information, compare in comparing
various elements, and summarize in getting some overview.

A way to discover the services that can be offered over a
latent space is to systematically explore these intents and apply
them to either none, one or several objects of interest. This
is what we propose in Table I, which shows some of the key
services we were able to identify. These services provide an
overview of high-level interactions that an analyst can perform
on immersive behavioral data. The integration of the latent
representation space enables new services and exploratory pro-

cesses. For instance, the “Show similar behaviors in context”
service leverages the latent space to find similar behaviors in
context. The implicitly learned behavioral similarity is based
on intricate cross-modal relationships that would otherwise
be impractical to define explicitly. On the other hand, the
“Show the similarities between these users” service enables the
comparison of complete traces based on all of their immersive
behavioral data, a comparison that would be impractical to
consider visually due to the amount of information.

III. CURRENT STATE OF OUR IMPLEMENTATION

The immersive behavioral data for our study comes from
a virtual kitchen project [1], involving 60 participants in 30-
minutes sessions. We recorded headset and controller trajec-
tories at 10 Hz and logged events during the virtual sessions
(e.g., user grabs butter3 at 01"22’).

To create a latent representation of this data, we adapted
the model from Lin et al. [12], modifying it to train on both
spatio-temporal and event log modalities. This baseline was
selected for its superior performance in action recognition and
its multi-head design which provides robustness to the learned
latent space. This enabled us to develop a “semantic” latent
representation of our immersive behavioral data, and we have
began to design and develop a visual analytics tools (latent-
space assisted) for data exploration.

IV. CONCLUSION

Our proposals open the way to a whole new class of visual
analytics systems dedicated to the exploration of immersive
behavior, that will benefit from the representation capabilities
offered by deep learning models. More work, however, is
needed at various levels to develop and validate the concep-
tual approach of latent space based visual analytics systems,
together with real working systems. Future works on our
side include: 1/ finishing the design and the development of
our visual analytics system based on the network we have
constructed, 2/ consolidate the evaluation methodology of such
a system and evaluating it at various levels, and with experts;
while also 3/ considering other deep learning architectures,
notably transformer architectures that would enable the pro-
cessing of immersive behaviors of any given duration.
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[1] R. Malo, “Flexibilité psychologique, psychopathologie et réalité
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