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Survey of Immersive Analytics
Adrien Fonnet and Yannick Prié

Abstract—Immersive analytics (IA) is a new term referring to the use of immersive technologies for data analysis. Yet such
applications are not new, and numerous contributions have been made in the last three decades. However, no survey reviewing all
these contributions is available. Here we propose a survey of IA from the early nineties until the present day, describing how rendering
technologies, data, sensory mapping, and interaction means have been used to build IA systems, as well as how these systems have
been evaluated. The conclusions that emerge from our analysis are that: multi-sensory aspects of IA are under-exploited, the 3DUI and
VR community knowledge regarding immersive interaction is not sufficiently utilised, the IA community should focus on converging
towards best practices, as well as aim for real life IA systems.

Index Terms—Immersive analytics, survey, virtual environments, immersive environments, data visualization, information visualization,
scientific visualization, visual data mining.

F

1 INTRODUCTION

IMMERSIVE analytics (IA) was defined in 2015 as ”the
applicability and development of emerging user-interface

technologies for creating more engaging and immersive
experiences and seamless workflows for data analysis ap-
plications” [1], and more recently as ”the use of engaging,
embodied analysis tools to support data understanding and
decision making” [2].

The idea to use immersive technologies to carry out
visual data analysis tasks is not new [3] and many proposals
have been made since the early nineties. Indeed, the interest
of researchers in the use of immersive technologies has been
driven by the ability to represent 3D data in 3D, as well as
the possibility to better exploit human perception capabili-
ties, and to make use of embodied perception and interac-
tion. The contemporary development and structuring of the
field (attested by scholar meetings [4], [5] and conference
workshops [6], [7], [8], [9] in the last years) is mainly related
to recent technological breakthroughs providing affordable
and high-quality immersive hardware and software.

This availability of supporting technology led to a rising
number of system proposals and scientific contributions.
However, no survey article has been published that would
help newcomers embrace the variety of three decades of
developments in IA. The most notable surveys in the field
focus on specific scientific domains, and do not cover IA as
a whole. For instance, Bryson et al. [10], Simpson et al. [11]
and Van Dam et al. [12] focus on scientific visualization
through the use of Virtual Reality (VR) technology, and
Ben Said et al. [13] focus on visual data mining exclusively.
Therefore, our aim is to provide readers with an exhaus-
tive survey of IA works from 1991 [14] up to the present
day. In particular we want to provide a quick access to
all the technologies, sensory mappings1, and interaction
techniques that have been implemented in IA systems, as
well as propose directions worth investigating.

• A. Fonnet and Y. Prié are from LS2N UMR6004 CNRS Univ. of Nantes.
E-mail: {adrien.fonnet,yannick.prie}@univ-nantes.fr

Manuscript received December 20, 2017; revised February XX, 2018.
1. We use the term sensory mapping over visual mapping since IA

systems are meant to use all senses.

1.1 Method: corpus building and analysis

Since no clear IA domain had been established before 2015,
no particular venues or keywords specifically gather contri-
butions together. We therefore conducted a systematic but
open investigation with the main scientific search engines
(IEEE Xplore, ACM Digital Library, Science Direct, Springer
Link, or Google Scholar), using search terms that cover
both data analyze processes (e.g. visual data mining or data
visualization) and immersive technologies (e.g. immersive
environment or virtual reality). Specific journals, confer-
ences, and workshops were also covered, such as TVCG,
IEEE Vis, or IEEE VR, as well as the full bibliography of key
scientists. The search stopped when papers’ references were
not bringing any new articles to the survey’s collection.

The initial criterion for a paper to be included in our
corpus was that it must contain a thorough description
of an Immersive Analytics system. First, we favored the
definition of [1] over that of [2] since it provides clearer
limits, and therefore is better suited for a survey paper.
Second, as the visual channel is the most commonly used
to provide immersion, we considered that the ”emerging
user-interface technologies” of [1] must at least have 3D
graphics, stereo, and head tracking (see Section 2). Third,
the systems had to be interactive (i.e. at least with navigation
and selection) for users to perform data analysis (i.e. explore
data representations and gather insights). However, our
criteria excluded many papers that we deemed important,
especially after so many years without a survey covering the
domain, such as evaluation papers focusing on the effect
of rendering technology, or position papers discussing the
future of IA. That is why we also included papers without
full IA system descriptions, but that clearly stated in their
introduction that their goal was to contribute to the design
of interactive immersive systems supporting data analysis

The search, completed by the end of year 2018, consti-
tuted our corpus (n=177). The analysis of the publication
dates (Fig. 1) shows a steady increase, with a slight peak in
the late nineties and a recent burst.

Initially, the corpus revealed the domination of two main
types of papers, those describing an IA system and those
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Fig. 1: Literature corpus over the years

related to evaluation linked to IA research (papers could be
both). For each type of paper, we further extracted relevant
information in a systematic way.

For the system papers (n=127)2, we extracted the system
name, target users, application domain, and the purpose
of the application. We categorized systems by immersion
category, leading to one hundred and four papers concerned
with virtual reality (VR), fifteen papers with augmented
reality (AR), and six with wall displays. Two papers [15],
[16] used an atypical solution, that is why their category
remained blank. We also described the rendering technology
used to display the visualization. Then, we focused on
the data, gathering the description of the dataset used by
the application and its main category. Dataset categoriza-
tion was inspired by Shneiderman’s taxonomy [17] and
resulted in the following distribution: spatial (36 papers),
temporal (7), spatio-temporal (43), multi-dimensional (24),
and graphs & trees (17). We also described sensory map-
pings, i.e. how the dataset attributes were represented in
the visualizations. Moreover, we systematically analyzed
each system according to the low-level interaction tasks it
allowed. These tasks, based on the taxonomy of Brehmer
and Munzner [18], are the following: navigate, select, details
on demand, arrange, change, filter, aggregate, annotate,
import, derive, and record. If a task was available, we
completed its description with the input device(s), the action
to be performed, and the output. Last, we checked if the
system featured collaboration. There were fifteen papers
that adhered to this criterion, and we completed their de-
scription by capturing aspects of the collaboration such as
synchronous/asynchronous, same/different physical place,
same/different visualization, and modes of communication.

For the evaluation papers (n=68), we split the category be-
tween IA system evaluations (28), evaluations comparing IA
with non-IA systems (26), and evaluations assessing which
technologies, representations, or interactions were better
within the same IA system (14). We extracted data types
and representations, dependent and independent variables,
tasks, quantitative, and qualitative results.

The remaining papers (n=21) were categorized based on
their type, i.e. survey paper, position paper, or framework,
and the main idea they conveyed was described.

1.2 Structure of the survey
The main objective of this survey is to provide a quick access
to all the technologies, sensory mapping, and techniques

2. Those systems are described in more details on the companion
website at http://www.immersiveanalyticssurvey.org.

that have been implemented in IA systems over the last
three decades. Based on the quantity of papers describing
IA systems and the quantity of information to convey, we
decided to focus our survey on these papers, that is why
the first four sections are dedicated to the description of
IA systems. To ease the reader’s understanding, we start in
section 2 by presenting the various immersive technologies
used, so as to provide a description of the physical systems.
Then, we focus on data representation and analysis goals
in section 3 (summarized in table 1), and on interactions
means in section 4 (summarized in table 2). Section 5 is
dedicated to the study of the specific aspects of collaborative
IA systems. Section 6 then covers evaluation papers. Our
second objective is to determine the main challenges of IA
and directions worth investigating in the near future. Each
section ends in a discussion, while Section 7 gathers our
findings and builds upon them to outline some orientations
for IA.

2 TECHNOLOGIES

Various technologies have been used in IA systems. Our
choice to determine if a technology is immersive is to focus
on its fidelity aspect, instead of considering a presence
feeling, as stated by Slater [19]. Therefore, our criteria in
this paper are that those systems must offer 3D graphics,
stereo vision, and head tracking. In each subsection we focus
on one immersive rendering technology, and on the main
associated input devices, following a chronological order
(see Fig. 2 for an overview timeline).

2.1 BOOM: Binocular Omni Orientation Monitor

The Binocular Omni Orientation Monitor (BOOM) is a coun-
terbalanced CRT-based stereoscopic display implemented
in 1990 [20]. It is composed of a robotic arm fixed on the
ground with each joint angle managed by microprocessors
and motors to ensure moving the structure requires low
energy from the user. A stereoscopic display is located at
the end of the arm where the user places his head to enter
the immersive environment. Position and orientation are
computed owing to sensors located at each joint.

This system was used by Bryson et al. to implement
scientific visualization applications such as the virtual wind-
tunnel [14]. The goal of the system was to effectively visu-
alise 3-dimensional unsteady flow patterns to understand
them despite their complexity. It allowed the user to in-
ject particles and observe their trajectories within a pre-
computed unsteady flow (3D vector field) while the sim-
ulation was running. Distributed computing was employed
to ensure interactivity and attain the minimum frame rate
(8 fps) required to guarantee immersive illusion [21]. One
cluster of computers was dedicated to compute the result of
the simulation and a second to compute the visualization’s
rendering, both communicating through a network.

All BOOM IA systems used two input devices: a clas-
sical keyboard and a data glove. The ease of entering and
leaving the immersive environment made it easy to use a
keyboard to change visualization parameters, although it
broke immersion. Data glove interaction in immersion used
electromagnetic field tracking, which required the control of
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Fig. 2: Timeline of the rendering technologies used to implement immersive analytics system

the workspace environment not to disturb the measure, as
well as a calibration phase prior to each use.

2.2 Surround-Screen Display
The first surround-screen display technology, called Cave
Automatic Virtual Environment (CAVE), was implemented
by Cruz-Neira et al. in 1993 [22]. This initial implementation
consisted of four walls (right, front, left, and floor) each
one associated to a 120Hz projector. Head-Tracking was
managed via electromagnetic sensors allowing the capture
of the position of the stereoscopic glasses. The CAVE was
used for scientific visualization, e.g. simulation about the
formation of the universe, 3D reconstruction of MRI data,
or climate data visualization [23]. Multiple concessions had
to be made to reach the required frame-rate (10 fps), e.g.
limiting the size of the dataset, simplifying algorithmic
calculation with approximation, and decreasing the quality
details of the rendered scene [24]. Multiple declinations of
the CAVE were implemented during the first decade of the
twenty-first century, with different numbers of walls (from 2
to 6) of varying sizes, and hardware improvements (cluster
of computers, projectors, tracking technology).

The next decade led to more radical changes. Allosphere
is a 10-meter spherical-shaped CAVE built in 2007 [25].
The associated Allobrain project led to the implementation
of an IA application for immersive navigation of brain
data extracted from functional Magnetic Resonance Imaging
(fMRI) [26]. The CAVE2 [27] and the Reality Deck [28]
are CAVE-like systems that were built respectively in 2013
and 2015 from the ground up for IA, focusing on the
collaborative aspects of data analysis. These systems used
tiled-display instead of projectors, greatly improving the
resolution over classical CAVE. Floor projection was also
discarded to ease the occupation of the central space by a
full team, hence cutting on the immersion to provide more
physical collaborative space.

The main source of input for CAVE were 3D mice tracked
over 6 degrees of freedom, with multiple buttons and a
joystick, called a wand. They combined the advantages of
introducing the position of the user’s hand to the virtual
world with a simple controller input. A few works also
explored the use of data gloves in CAVE [29], [30].

2.3 FishTank VR
The FishTank VR concept was introduced by Ware et al. in
1993 [31]. It consisted of a monitor screen combined with
stereoscopic glasses and an external head-tracker, providing
all the required components for an immersive experience at
an affordable cost. The field of view was limited, but res-
olution and brightness were superior to projections-based

systems. Another characteristic of FishTank VR was the use
of a keyboard as the main source of input, since the overall
setup is close to a 2D desktop. Ware et al. used this tech-
nology to visualize object-oriented software with a network
representation. They confirmed their initial hypothesis that
adding an immersive component to a system, i.e. stereo and
head-tracking, increased both the perceived and understood
information for graph analysis [32].

2.4 Responsive Workbench
The responsive workbench appeared in 1995 [33]. It used
stereoscopic glasses and external head-tracking with a pro-
jection based horizontal screen. This choice was made to
target specific workers for whom the workbench metaphor,
i.e. working over a table, was deemed useful such as doctors
(medical training), automotive engineers (windtunnel), and
architects (architectural design) [33]. Input devices were
diverse: data glove [34], wand [35], or tracked stylus [36].

Like the CAVE and the FishTankVR, such systems only
provided one user with the correct perspective, which led to
issues in collaborative settings, e.g. finger pointing to show a
point of interest did not work. A two users’ solution for the
responsive workbench was developed in 1997: both users
had head-tracking while the screen displayed 4 images per
frame (2 users × 2 images for the stereo) [37].

2.5 HMD: Head Mounted Display
Head Mounted Display (HMD) has been used to render
immersive environments since Ivan Sutherland’s first pro-
totype [38]. However, the small resolution of the system
was judged unfit for data analysis until the late nineties.
Indeed, the oldest IA references in our corpus that use HMD
were published in 1997 with the Virtual Data Visualizer
for VR molecular data simulation analysis [39], and the
Studierstube, for augmented reality (AR) dynamical system
analysis using the Virtual IO i-glasses [40]. Use of HMD
remained sparse in the context of IA after year 2000, with
only a few attempts, e.g. [41], [42], but the arrival of the
Oculus Rift DK1 in 2012 brought about a renewed inter-
est. This first version was still limited due to the lack of
positional head-tracking and researchers had to overcome
this first hurdle with external tracking systems to generate
proper immersive environments [43]. The last generation of
HMD —such as Oculus Rift [44], HTC Vive [45], Meta 1
[46], or Microsoft HoloLens [47]— provided high resolution,
stereoscopic rendering, and head-tracking, while remaining
affordable, putting them in a perfect position to become
privileged IA hardware for the years to come [48].

HMD systems have been associated with various input
means for IA. Data gloves were used in the late nineties
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e.g. in [41]. The use of bare hand(s) movement was later ex-
plored to interact with the virtual or the augmented world,
with Oculus Rift HMD and LeapMotion [49] trackers [50],
or HoloLens [51]. IA researchers also rapidly adopted con-
trollers as soon as they were shipped with VR HMDs (e.g.
HTC Wand and Oculus Touch) [52]. IA HMD-based systems
have mostly been designed for standing users.

HMDs have also been used for IA in conjunction with
high resolution displays. For instance, Nagao et al. [53]
used the Meta 1 with a 8K screen, allowing the preview
and tuning of parameters of a visualization in the HMD,
before computing the entire scene for the screen, thus saving
a lot of computation power and ensuring adequate frame
rate while managing complex visualizations and datasets.
Another approach was to provide dedicated information in
the HMD while the main screen or table was used for shared
information in collaborative settings [54], [55].

2.6 Discussion
The rendering technologies used in IA are constantly chang-
ing. The BOOM was used in the nineties but there is no men-
tion of it in our corpus after 1994. The CAVE had to evolve to
remain relevant, switching from projectors to tiled-display.
FishTank and workbench systems have been widely used,
but not so much in the past few years, maybe because of the
current focus on HMDs pushed by the gaming industry. In
addition, a variety of new input devices have regularly been
proposed that open the design space of interaction possibil-
ities for IA, such as data gloves or trackers which allow the
tracking of all 6 degrees of freedom of any object they are
attached to. It must also be underlined that in the past 6
years the most used immersive technologies (HMDs) have
not been built with IA as their main target, and researchers
using them had to compose within their limitations. As
a conclusion, the lasting IA dependency on the relatively
volatile available technology may have induced volatility
in the field, which is still struggling to develop its core
concepts and techniques.

3 DATA AND SENSORY MAPPING

Various categories of data have been used for immersive
analytics. We considered the five categories defined in
Ben Shneiderman’s taxonomy [17]: Spatial, Temporal, Spatio-
Temporal, Multi-Dimensional, and Graphs and Trees, and we
focused on data representations and sensory mapping. We
use the term sensory mapping to describe the projection of
data attributes onto sensory channels, as a generalization of
visual mapping that is more appropriate for IA.

Table 1 provides an overview of the papers presented
in this section. The column category is based on Nesbitt’s
four main modalities to encode data [56]: spatial, visual,
sound, and haptics. The spatial category has been renamed
as ”position” to avoid confusion with the spatial data type.

3.1 Spatial Data
Being spatial in nature, immersive environments are a natu-
ral choice for presenting spatial data.

Position is the main channel used to encode spatial data
information, with two main approaches: data elements can

be placed on top of a map, or relative to a 3D model. For
geo-localized data, the battlefield decision-making Dragon
system [35] displayed units over a 3D representation of a
map, at the location of latest report. A similar application
was recently proposed to help fight against maritime smug-
glers and coordinate action between agencies [55]: entities
such as boats and drones, were displayed on top of a tangi-
ble map of the maritime shore using AR. Archaeological
systems also used such mapping by placing each found
item at its position of extraction over a representation of
the excavation site. The ARCHAVE system opted for a flat
dark gray texture to represent the excavation site [66], [67]
while VITA (Visual Interaction Tool for Archeology) [42]
and ArtifactVis2 [68] implemented photogrammetry. The
ENDURANCE project [57] proposed a reconstruction of
Lake Boney in the Antarctic on top of which measurements
(bathymetry scanning and water chemistry profiling) were
positioned. Lechner et al. system [127] allowed visualization
of water chemistry measurements made in the mid-Atlantic
states of the USA. VRGE [59] displayed a 3D representation
of earth mineral resources showing various layers and mea-
surement uncertainties. Mahmood et al. system [58] sup-
ported bio-diversity analysis by displaying animal species’
locations over multiple 2D maps occupying the 3D volume.

Other proposals used virtual or real 3D models as their
base for spatial data placement, mostly in the medical imag-
ing context. Some systems proposed 3D model of brains
reconstructed from CT (computerized tomography), MRI
(Magnetic Resonance Imaging) and fMRI (functional MRI)
data [60], [62], [64], [128]. This type of 3D body model rep-
resentation could also be complemented with 2D slices for
doctors to import their previous scans inside the immersive
visualization [63], [69]. Instead of using a classical network
approach with force placement algorithm, Keiriz et al. [65]
took advantage of the spatial structure of the brain to place
connectome data in their NeuroCave system: each node was
located at its true position in the brain. Gillet et al. [61]
placed electrostatic field representations using AR around
a tangible model of a macro-molecule.

The AR ARSAM tool for industrial factory layout plan-
ning allowed users to modify layouts in-situ and then
visualize the production line [51].

Visual. The main strategy for representing geo-localized
data elements is to use 3D glyphs. Several archaeological
systems described findings by associating shapes to find-
ings’ types and colors to cultural origins or materials [42],
[66]. The Dragon System [35] represented troop squads with
boxes and more prominent units (tanks, ships, and planes)
with 3D models. Color, opacity and 3D icons were used
to depict allegiance: allied units were represented with a
semi-transparent blue texture with an American flag located
next to them, while enemy troops appeared with darker red
skull flag. Color was also used in medical imaging to encode
transfer function [64], or degree of anisotropy [128].

Sound was used by two systems in our corpus. Frölich
et al. [70] proposed a system to analyze well log data where
one numerical attribute was encoded using a Geiger counter
metaphor, the velocity of the ticks indicating the value of the
attribute. Lombardo et al. [71] proposed a visualization of
macro-molecules using solvent extruded surfaces for ligand-
receptor interaction study. The selected ligand emitted a 3D
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TABLE 1: Overview of the sensory mappings proposed in the IA literature

Data Type Category Sensory Mapping References
Geo-localized data on top of a map representation [35], [55], [57], [58], [59]Position Localization over a 3D model [60], [61], [62], [63], [64], [65]
3D model [35], [51], [55], [61], [64]
3D Glyph - Shape, Color, Opacity [42], [58], [59], [65], [66], [67], [68]Visual
Texture - 2D slice in medical imaging [63], [64], [69]
Geiger counter metaphor [70]Sound Simple tone to indicate structure presence [71]

Spatial

Haptics Surface force feedback [72], [73]
Position 3D Scatterplot [74], [75], [76], [77]

Dots [74], [78]Visual Basic shape with color [75], [76], [77]
Sound - -

Temporal

Haptics - -
Particle/molecule position in simulation volume [14], [39], [79], [80], [81], [82], [83], [84], [85]
Geo-localized data on top of a map representation [37], [50], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98]Position
Axes to represent non spatial attributes [39], [90], [91], [99], [100]
Size of 3D object [95], [101]
Arrows for vector field [82], [88], [89], [101]
Isosurface [82], [88], [89], [101]
Heatmap [94]
Colors [37], [39], [79], [84], [90], [91], [92], [94], [97], [101]

Visual

Lines to represent trajectories [37], [93], [94], [97], [98], [99]
Midi notes to represent an averaged value [80]Sound Air-rushing metaphor [81]

Spatio-temporal

Haptics - -
3D scatterplot [41], [102], [103], [104], [105], [106], [107], [108], [109]
Parallel Coordinates [52], [110]
Based on clusterization algorithm [111], [112]

Position

Based on query result [113]
Colors [41], [102], [103], [104], [105], [106], [108], [109], [113]
Size [41], [102], [103], [104], [105], [106], [108], [109]
Shape [102], [103], [104], [105], [106], [108], [109], [113]
Texture [106], [109]
DOP (Dynamic Object Properties) [104], [108]

Visual

Line [52], [110], [113]
Spoken number for categorical attribute [108]Sound Pitch interpolation for numerical attribute [108]

Multi-dimensionnal

Haptics - -
Node/edge diagram [32], [114], [115], [116], [117]Position Encapsulation of element [118], [119], [120], [121], [122], [123], [124], [125], [126]
City metaphor [118], [121], [124], [125], [126]
Other metaphor (World, Solar system) [119], [120], [121], [122], [123]Visual
Node/edge properties [115]

Sound - -

Graphs and trees

Haptics - -

sound to indicate its localization, so that its position was
always available to the user even when occluded.

Haptics was only used by two systems, both dedicated
to macro-molecules visualization, the user being able to feel
the outside surface of spheres [72], [73] or the inside of
curved tubes [73] with a haptic pen device.

3.2 Temporal Data
Temporal data seems to be under-represented in our corpus,
we hypothesize that this is due to its non-spatial nature
and its arguably less complex nature compared with multi-
dimensional or graphs and trees data, making it less attrac-
tive for immersive environments.

Position. Moere et al. [78] proposed a system to in-
vestigate the financial data of their university in a CAVE,
considering budgets, departments, and number of students
over time. They introduced the concept of infoticles where
each datapoint was represented by a particle generated by
a circular seed point that represented a specific table of
the dataset. Each particle had a limited timespan based
on the actual timespan of the entity in the university, and
was affected by attractive forces generated from filters (see
section 4.6 for more details). Nesbitt et al. [74] implemented
an IA system to support traders in their stock market data

analysis. Time was represented with an axis, and the time
window ranged from a single day to several months. Stock
prices, volumes, and moving average prices over a period
were encoded using the two remaining axis. HeloVis [77]
was a radar signal IA tool that allowed signal intelligence
operators to determine the source of each signal. Datapoints
were placed on a helical scale representing time. The IDEA
system [75] presented users activity logs as a 3D cylindrical
scatterplot: each axis encoded one of the main attributes
(date/time, users, and event types), and was represented
by an arrow with ticks and labels. DebugAR [76] presented
distributed system logs to programmers for debugging pur-
poses. Each event was represented by a sphere in aug-
mented reality on top of a tablet placed horizontally on a
desk. The height encoded time, the current analyzed time
step being placed at the desk level. The messages exchanged
between systems were encoded by a line.

Visual. Color is largely used to provide additional in-
formation about temporal data elements. HeloVis [77] used
color to encode frequency, level, or width of the pulse,
IDEA [75] to encode event types. In DebugAR [76], dat-
apoints and lines colors respectively encoded the system
emitting the logs, and the types of messages.

Sound and Haptics were not exploited for temporal data
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in the papers of our corpus.

3.3 Spatio-Temporal Data

Spatio-temporal data have been used in IA systems since the
virtual windtunnel [14] (see section 2.1). Displaying results
of 3D simulations with both complex and inherently 3D
data was indeed one of the driving forces that pushed the
development of IA systems.

Position is logically used to display spatial positions
of simulation data. Molecular simulations have been vi-
sualized in immersive environments to provide insights
to chemists and doctors, e.g. deep understanding of drug
compound interactions [39], [79], [80] or blood damage
analysis [85], showing particles at their computed location
for each time step. CFD simulation used 3D flow fields [14],
[81], [82], [84]. Moreover, as it was the case for purely spatial
data, temporal geo-localized data have also been largely
used in IA systems. One important domain is atmospheric
and oceanographic data analysis to support climatologists,
objects of interest being placed on top of map representa-
tions [50], [86], [87], [88], [89], [90], [91], [92], [95], [101]. Tra-
jectory data are also geo-localized data but are represented
by lines that cover the full duration of the trajectory instead
of discreet elements [37], [93], [94], [97], [98]. Cunningham
et al. allowed users to explore law enforcement’s texts
logs [96]. They represented each text entry with a graph
of its named entities, figured as icons, and relations, the
icons being linked to a 2D map if they referred to a location.
Interestingly, a few works used one spatial dimension of the
environment to represent non-spatial information. The Vir-
tual space time allowed physicists to observe the complex
geometry of curved space time by displaying geodesics [99]
with one dimension encoding the time; the virtual data
visualizer [39] could encode molecule velocities on one
spatial dimension, similarly to [90], [91] which displayed the
power of earthquake on the height axis. The tangible Braille
plot [100] was a supportive system to analyze movements of
entities, e.g. people or vehicles, around a location of interest
(LOI). It used a cylindrical coordinates system where radius
and angle encoded the distance and orientation from the
LOI, and height the time.

Visual. Flow field for CFD simulation have been rep-
resented with arrows providing direct perception of the
direction and orientation of the flow [14], [82]. Similar
representations have been used for atmospheric simulation
and analysis to represent water and wind flows [86], [87],
[101]. Isosurfaces could represent environmental variables,
e.g. temperature, water density, or pressure [86], [87], [88],
[89], [101]. Color has been used for all types of spatio-
temporal data: the virtual data visualizer [39] used it to
encode molecule velocity, [84] for air pressure, [90], [91]
for the magnitude of the earthquake, [92] for the disease’s
category of a new reported case, and I-flight [94] for the
bees’ roles or behaviors when analyzing bees’ trajectories.
Color gradient was used in [97] to display the orientation
of plane trajectories, line width encoding traffic. Last, [95]
represented weather precipitation values as measured by
sensors directly with the heights of a 3D bars.

Sound has been used in two papers: Wesche et al. [81]
used sonification to display the flow field magnitude of a

CFD simulation with an air-rushing sound metaphor; [80]
used it to display the overall energy of the molecular system
in the current simulation step by playing a specific pitch.

Haptics has not been used in any paper of our corpus to
encode attributes of spatio-temporal data .

3.4 Multi-Dimensional Data
Systems in this section have all been designed for visual
data mining, where users try to obtain insights from corre-
lations, clusters, or outliers. The datasets vary a lot, from
classical machine learning iris or wine databases [106],
[112], to car [107], [129], demographic [41], [52], [102], ge-
nomics [111], [130], or forest databases [104], [105], [108].

Position is most commonly used to encode one attribute
per dimension of the 3D environment, effectively creating
3D scatterplots. Indeed, 11 papers out of 17 use such rep-
resentation [41], [102], [103], [104], [105], [106], [107], [108],
[109], [129], [131]. Other possibilities have been explored,
such as 3D parallel plane coordinates [52], [110], projected
2D scatterplots corresponding to the physical position of
the user within the virtual environment [130], algorith-
mic positioning with SOM (Self Organizing Map) [112] or
BLAST [111], user query based so that relevant datapoints
move close to the user [113], or even self-created by the user
with ImAxes [129].

Visual. Additional attributes of 3D scatterplots data-
points have been encoded using various visual channels:
color [103], [104], [105], [106], [108], [109], [131], shape [105],
[106], [108], [109], size [103], [105], [106], [108], [109], [131],
or texture [106], [109]. The 3DVDM (3D Visual Data Mining)
approach added dynamic object properties, proposing to
use vibration, rotation, or blinking of 3D glyphs to encode
additional attributes [104], [105]. For parallel plane coordi-
nates, the lines’ colors were used to encode more informa-
tion and de-clutter the visualization [52], [110], [129].

The Sound channel has only been used once in our
corpus to encode numerical and categorical attributes in a
second version of 3DVDM [108]: the numerical attributes
were represented with pitch interpolation and categorical
attributes with spoken numbers. Only the datapoints in a
sphere centered on the analyst were emitting sound, the
analyst controlling its diameter.

The Haptics channel was not used by the papers in our
corpus to encode additional attributes.

3.5 Graphs and Trees
Position. Software visualization has been one of the driving
domains for tree data use in IA, with the objective to make
it easier and faster for code maintainers to familiarize with
source code, and detect important and interesting areas
in it. Most systems used a city metaphor to represent
source code [118], [119], [120], [122], [123], [124], [125], [126],
position being used to organize elements based on their
proximity in the tree. For graph data, node placement has
generally been determined by force generation algorithms to
limit the occlusion of the node-link visualization [32], [114],
[116], [117].

Visual. FileVis (1998) [118] represented each file with
a pedestal with an icon depicting its type (sphere for
definition, or cylinder for declaration). Color similarity
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indicated two pedestals had the same file names. Small
blocks representing functions were placed on pedestals, the
blocks heights encoding the number of lines, and the colors
reflecting the complexity, from low (deep blue) to high
(bright red). SofwareWorld (1999) [119], [120] represented
the whole software as a world, a package being a country,
a file a city, a class a district, and a method a building. The
size of a building represented the numbers of lines of the
method, the number of doors the number of parameters,
and the number of windows the number of declared vari-
ables. The color of a building indicated whether the method
was private or public. Imsovision (IMmersive SOftware
VISualizatiON, 2001) [122], [123] represented a class with a
platform, whose size encoded the total number of methods
and attributes. Attributes were represented as red spheres
near the platform, their size encoding their type. Mem-
bers functions were represented by columns placed on the
platforms, with colors encoding their type, i.e. constructor,
accessor, and modifier, and height the number of lines of
code. SkyscrapAR [124] considered software evolution: the
user could look at the evolution of the city by moving
between multiple versions of the software. This allowed
representation of attributes such as code churns (number
of modified, added, and deleted lines over the life of a
file), and biggest lines of code (highest number of line for
a file based on all its versions). These were represented
within the building metaphor with building height linked
to code churn, the base area encoding the current lines of
code, while a green square at the bottom represented the
surface occupied by the building in its biggest state using
a garden metaphor. Such representation quickly allowed
maintainers to see which part of the code had gone through
many changes (skyscrapers), or to find deprecated functions
(large gardens with tiny buildings). ExplorViz proposed a
novel attribute representation by showing communications
between packages as orange lines, whose widths encoded
call frequencies [125], [126].

A few systems used visual mapping to provides
additional information about graph data attributes.
Genome3DExplorer [115] allowed the exploration of the
Yeast gene block duplication (chromosome database): nodes
were represented as spheres, their values being encoded by
size, shape, transparency and color, the values of edges were
encoded by length, shape, transparency, and color. Russo
Dos Santos et al. [121] also proposed a metaphor of a solar
system to represent network services data.

Sound and Haptics were not exploited for graphs and
trees data representation in the papers of our corpus. A
unique paper falls outside Nesbitt’s taxonomy by exploring
the use of smell for crypto-currency market analysis [132]:
the average transaction rating of an entity was converted
into a nominal attribute with six distinct values, and dis-
played through six different smells, such as citrus or floral.

3.6 Discussion

IA systems cover a wide spectrum of datasets and analysis
objectives, from scientific visualization of CFD simulation
or brain data to software visualization. This huge variety
of works leads to additional complexity when it comes to
federating a community and building best practices, though

a few attempts in that direction have been made for multi-
dimensional data representation [104], [133]. Some trends
can also be noted in specific domains: software visualization
often used a city metaphor, multi-dimensional datasets have
mainly been visualized with 3D scatterplots, and oceanog-
raphy and climatology solutions always used isosurfaces
and vector fields. Last, despite the multi-sensory aspect of
IA, the focus of research is heavily biased toward visual
representation. Only two papers in our corpus made use of
the haptic channel to encode information, and sound has
been scarcely used.

4 INTERACTIONS

This section is dedicated to presenting the interaction
modalities for the IA systems in our corpus, organized
by data analysis tasks. The tasks are taken from the tax-
onomy of Brehmer and Munzner [18]. We chose it over
the taxonomy of Laha et al. [153], whose goal oriented-
approach did not fit our focus on interaction, and that of
Keefe and Isenberg [154], which is more interaction-oriented
but lacks critical low-level tasks, such as annotate or record.
Table 2 gives an overview of the tasks and main interaction
modalities. Tasks have been sub-specified into categories to
further structure the sub-sections.

4.1 Navigate

The navigate task covers interactions that alter the view-
point of the user. Most immersive technologies include head
tracking, allowing their users to navigate virtual worlds
with physical movements. Additional navigation modalities
must, however, be implemented when the total volume of
the visualization becomes bigger than the available physical
space. Only BOOM solutions (where movement range is
determined by the robotic arm) altered the 1 to 1 movement
law between the user head and the camera displacement
by having a faster virtual movement outside of the data
volume [14]. All other solutions have used additional con-
trol that we categorized as follows: walking/flying, scaled
world grab, world-in-miniature, and zooming.

Walking (gliding) is a classical movement modality
for applications based on first person view such as video
games, it is therefore popular for IA systems. For example,
GeoVisor allowed movement over a giant 2D map [52] using
the input from a VR controller’s joystick. Flying is a 3D
movement that requires an additional direction, in general,
the orientation of the wand or VR controller serves this
purpose [39], [75], [95].

World grab proposes a different way to navigate through
an immersive environment by moving the position of the
visualization instead of that of the user. Swipe gestures have
been used to pan the visualization in 2D, either by tracking
a data glove over a workbench display [34] or by detecting
classical swipe gestures on a touch table associated to an
AR display [64], [110]. ExplorViz used a metaphor of “grab
& drag” [125], [126]: a fist gesture (captured by a Kinect
V2) followed by a drag movement with the right hand
translating the visualization. For 2D rotation, Shen et al. [62]
used a joystick input from the wand in a CAVE, while La
Viola Jr et al. [34] proposed a two-finger pivot gesture with
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TABLE 2: Overview of interaction tasks in IA literature

Task Category Interaction References
walking (gliding) /flying direct controller input [39], [52], [75], [95]

direct controller input [62], [70], [134]
markers displacement [107], [124]world grab
hand gesture [34], [87], [125], [126]
grab-move-release [41], [66], [67], [135]world-in-miniature swipe gesture [64]
direct controller input [124], [136]
virtual menu [35]
magnifying glass metaphor [39], [39], [81], [81]

Navigate

zooming

hand gesture [34], [125], [126]
raycasting [35], [55], [75], [79], [95], [106], [112], [122], [123], [137]single-object swipe gesture [138]
brushing [98], [127], [136]

Select
multi-object box selection [36], [39], [139], [140], [141]

pop-up window [35], [55], [75], [95], [112], [137], [138]
360 photo [137]reactive
interactive lens [142]
gaze [143]predictive proximity [78]
text information [122], [123], [144]

Details on Demand

2D screen multimedia information [106]
grab-move-release [145]
heat model [30]datapoint
attraction model [78]
grab-move-release [14], [21], [34], [70], [146]view components touch press [110]

Arrange

views grab-move-release [69], [95], [129], [138], [147]
opacity [50], [81]
glow [122], [123]highlight
3D glyph [29], [102]
data position (axes) [41], [110]mapping data visual [39], [94]

Change

representation - [52], [107], [129], [148]
box selection [36], [39], [139], [140]
voice command [34]direct selection
slice selection [128]
visual menu [65], [75], [82], [94]
voice command [115]

Filter

abstract layer
embodied control [64], [134], [148]

Aggregate edge-bundling - [148]
free annotation - [149]Annotate predefined annotation - [150]
load new dataset - [65]Import load new data element - [42]

Derive - - -
undo selection - [39]
record visualization state - [29], [34], [151], [152]Record
record video - [34]

a data glove over a workbench. Multiple solutions have
been implemented for 3D rotation: grabbing edges of the
visualization box with a data glove [87], performing a fist
and drag gesture [125], [126], physically rotating a fiducial
marker [107], [124], or rotating a specific controller, based on
the shape of the visualization, its orientation being directly
connected to the visualization orientation [70], [134].

World-in-miniature allows navigation while keeping the
context in mind by providing a scaled down version of
the visualization for the user to choose where he will be
teleported. ARCHAVE [66], [67], Wizard [41], Interactive
Slice WIM [64], and BEMA [135] systems used it; they all
had data volume representations big enough for users to
easily lose the context of their position.

Zooming. Multiple input types have been used for

zooming: keyboard [124], controller buttons [136], 3D menu
selection [35], or hand gestures [34], [125], [126]. As an exam-
ple, for the latter, ExplorViz used a pushing and pulling box
metaphor: zoom occurs when both closed hands approach
the torso of the user, while opening both hands and pushing
them away from the torso triggers unzoom. Other systems
feature virtual tools such as magnifying glass grabbed with
data a glove [39], [81], or a stylus [36], [140], the movement
of the input device changing the visualization scale.

4.2 Select

The select task covers datapoint(s) selection. In general this
is to activate details on demand (see 4.3), highlight (see 4.5)
or filtering (see 4.6).
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Single-object selection. IA systems in our corpus all
relied on raycasting, with differences in raycast source
and orientation. ExplorViz [122], [123], Dragon [35], CAVE-
SOM [112] and Disz et al. system [79] all used a wand.
The origin was the position of the wand, and the ray
direction was mapped on its orientation. Obelisk-xR [137],
IDEA [75] and the river disaster management system of
Ready et al. [95] applied the same principle replacing the
wand by a VR controller. VRMiner [106] detected a pointing
gesture of the data glove to activate the raycast, using index
orientation as direction. The maritime smuggler detection
system of Franz et al. [55] used the head-tracking of the
Microsoft Hololens to produce the raycast: the head position
defined the origin and the user gaze provided the direction.
Keefe et al. [138] went a bit further: the raycast was first used
to select a general zone of the visualization, then a swipe
gesture on an Ipod touch allowed to move the selection
in the direction of the swipe, for higher precision. The use
of one finger or two fingers for the swipe determined the
distance of the jump to the next object.

Multi-object selection. Two approaches have been ex-
plored for multi-selection. The first technique, brushing, has
been implemented in Lechner et al. [127] and Brunhart et
al. [136] systems with a similar principle: users grabbed a
virtual tool, represented by a lamp, that projected a cone
with a limited height. Any datapoint entering in contact
with the cone was selected. FiberClay [98], a system to
analyze planes’ trajectories, used a simple raycast for brush-
ing: any trajectory that came into contact with the raycast
—activated by pressing the trigger of a VR controller—
was added to the selection. Performing the same action
with the second controller removed trajectories from the
selection. The second technique relied on box selection. In the
Cosmic explorer [139] for visualization of galaxy formation
simulation, the user could select a slice of the visualization
volume through a series of hand gestures tracked by a
data glove. Slice selection was possible for all three main
coordinates resulting in the equivalent of a box selection. In
the Virtual data visualizer, users grabbed a box virtual tool
with a wand, that activated the zone selection mode [39]. A
diagonal of the cube was defined by pressing a button twice,
each press defining a point of the diagonal at the position
of the wand. The cube was oriented parallel to the world
coordinates axes. Hentschel et al. system [141] used the same
method. DeHaan et al. proposed the plexipad [36], [140] to
offer free orientation of the selection box. Plexipad was a
square of plexiglass with a 6-degree of freedom tracker. The
first face of the box was defined by the face of the plexipad
while the last point needed to define the full geometry was
positioned with the help of a tracked stylus.

4.3 Details on Demand

This task covers interactions aimed at displaying detailed
information about the data. Some approaches take place in-
side the virtual environment, others make use of an external
2D screen.

Reactive approaches. The most common way to get de-
tails on demand is a simple single-object selection, followed
by the appearance of a pop-up window filled with text infor-
mation. For instance, the Dragon system [35] displayed all

the details of a selected army unit, a similar approach being
used for boat or drone entities in the maritime smugglers
detection system [55], neuron information in the CAVE-
SOM [112], demographic data in Keefe et al. system [138],
and logs in IDEA [75]. The river disaster system of Ready
et al. [95] displayed a 2D curve of the weather sensor value
over time. The Obelisk-xR [137] also used a pop-up window
to present detailed information about the selected stone, one
characteristic being that it could then transport the user into
a 360◦ photo of the location where the stone was extracted,
upon selection of the location value in the pop-up window.
Last, Mota et al. [142] proposed a spherical virtual lens to
enrich the representation of the delimited zone, for multi-
geometry 3D visualization. The lens position was directly
controlled by the movement of a VR controller.

Predictive approaches. Another way to get supplemen-
tary information related to objects is to try and automatically
determine the interest of the user. For instance, infoticles
displayed the labels of the particles close to the user [78].
In [143] multiple 2D maps of oil spill simulation were visu-
alized through a Microsoft HoloLens. They were positioned
on top of each other, the one looked at by the user being
scaled up while the others moved aside.

Additional 2D screen. The use of a second screen has
been explored in IA systems. Imovision displayed the C++
source code of the selected class or method directly on a 2D
screen next to the CAVE [122], [123]. Azzag et al. [106] used a
second screen located next to their main 3D screen to display
multimedia data, e.g. images and videos. Baumgartner et
al. [144] allowed users to grab, with a data glove, a datapoint
representing a document from their 3D screen, and move
it on top of a tablet resulting in the full document text
appearing on the tablet.

4.4 Arrange

The Arrange task refers to interactions that spatially orga-
nize visualization elements. The following describes pro-
posals to organize datapoints, view components, and multi-
views.

Arranging datapoints in IA systems is rare, due to the
fact that their positions are used to encode information.
Infoticles [78] used an indirect solution to manipulate dat-
apoints’ particles: the user could create an attractor object
which was associated with a particular value for an at-
tribute. Any data sharing the same value as the attractor
for this attribute was then attracted by it. Osawa et al. [30]
proposed a node/edge 3D representation of network data.
Nodes were initially placed with a force-directed placement
algorithm, but they could be “heated” to change their posi-
tions. Each node, indeed, possessed a virtual temperature.
The higher its temperature, the more the other nodes would
be repelled from it. Edges could also transport temperature,
so nodes linked to a heated node became heated, which
made the network of the selected node more apparent.
Users could adjust a node temperature with a data glove,
by touching it with their fingers, opening their thumbs, and
doing a rotation of their wrists. They could also create a heat
cone to affect multiple nodes at the same time, by pointing
the index finger without touching a node, the opening of
the thumb defining the cone angle. Nodes could also be
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locked in place, by pinching them with the index finger and
thumb and then doing a wrist rotation, mimicking a key into
keyhole movement. Last, Yi-Jheng et al. [145] allowed users
to arrange nodes and edges through direct hand gestures,
making a fist to grab the object, then moving the hand before
opening the fist to lock it in a new position.

Arranging view components can be found in CFD.
Data gloves-equipped users could move particle injectors to
new positions, either through pinch gestures followed by a
movement [14], [21] or by using voice commands to grab the
element closest to the hand, followed by a movement and
then a “drop” voice command [34]. RSVP system [146] and
the seismic cube visualization [70] showed three 2D slices
perpendicular to each main axis. RSVP proposed a slider
control over a 2D UI while Fröhlich’s system used a specific
controller called the cubic mouse, which allowed lateral
positioning of those slices with sliding rods which went
through the whole controller. Each rod was on a different
face of the cube to make the relation to its associated slice
intuitive. In their parallel coordinate system for presenting
2D scatterplots on top of a touch table, Butscher et al. [110]
provided the possibility to invert the axis of one representa-
tion with a touch press on a menu button.

Arranging views. Most of the systems in our corpus
use the same paradigm, namely grab-move-release. Each
proposal uses a specific input to link the movements of
the controller to the movements of the view until another
input discards the link. Saalfeld et al. [69] added virtual
windows around their multiple views, taking inspiration
from computer windows. Grab was done by a button press
when a raycast projected by a stylus was in contact with
the title of the window, release was done by the same
button press. Ready et al. [95] river disaster management
system allowed to arrange pop-up windows by grabbing
them with a trigger input while in contact with the win-
dow, while release was done via the same trigger. Keefe
et al. [138] demographic analysis tool allowed the user to
arrange details-on-demand windows by selecting them then
moving them around through swipe gestures on an Ipod
touch. ImAxes [129] let users build their own visualization
by grabbing and arranging axes (see 4.5), thus creating
multiple views. A view could be grabbed by pressing a
trigger on the VR controller while in contact with the view
volume, and release was done by pressing the trigger again.
A similar solution was used to arrange views for DICE
model visualization [147].

4.5 Change

The Change task refers to interactions that alter visual
encoding. This includes highlight of specific datapoints,
changes in attribute mapping for one representation, and
changes of representations.

Highlighting. One way to highlight datapoints is to con-
trol their opacity. Wesche et al. [81] implemented in the CFD
system the possibility to change the opacity of a particle
injector, which in turn changed the opacity of all its outgoing
particles. To do so, the user grabbed a virtual tool and placed
it in contact with the particle injector, followed by a wrist
rotation to determine the resulting opacity. Moran et al. [50]
allowed a user of their tweet analysis system to change the

opacity of the buildings with a virtual menu activated by
a LeapMotion hand-gesture. The 3D scatterplot proposed
by Symanzik et al. [102] featured a pre-set of 3D shapes that
could be grabbed with a pinch-gesture of the data glove, and
put in contact with datapoints to change their appearance.
Arms et al. [29] used a virtual brush tool metaphor: the user
could create a virtual brush with specific color, size, and
shape selected from a raycasting pointing gesture of the data
glove, and then touch datapoints of the 3D scatterplot to
change their color, size, and shape accordingly. The software
visualization system ExplorViz [122], [123] allowed users to
quickly display relationships between entities: overloaded
methods were highlighted with a glow effect when the user
selected a method by placing the wand on top of it.

Changing attribute mapping for one representation is
done by using menus in all the systems in our corpus.
I-flight [94] used a 3D menu with raycasting selection to
switch between two color mappings related to bees’ roles or
behaviors, or change the environmental variable isosurface
representation. Butscher et al. [110] system allowed changes
to the dimensions displayed on the 2D scatterplot axes of
their 3D parallel coordinate representation via a touch table
menu. The selected 2D scatterplot appeared on the table and
the user could touch an axis to display a list of the dataset
attributes, then select one. The Wizard system [41] used
one-handed interaction to select the variables displayed on
each axis of a 3D scatterplot. A menu was displayed on
top of the user hand, each phalanx had a “button” on top
of it, and the thumb was used to press on the selected
buttons. The user first selected the axis, then the attribute to
map to it. The virtual data visualizer [39] could group data
into classes that the user could map to a specific 3D glyph
using a workbench metaphor: class selection was done via
a 3D menu with raycasting selection from the Wand, shape
selection by grabbing a 3D model from a drawer, color by
pointing on a color map on top of the workbench, and size
with a slider on top of the workbench.

Changing representations. GeoVisor [52] used VR con-
troller button press to switch through available represen-
tations such as 3D scatterplot, 3D parallel coordinates, or
node-link diagrams. Hurter et al. [148] represented a 3D
cubic volume of plane trajectories in AR with Hololens. If
the user physically stepped inside the volume, the represen-
tation changed into 2D projections on each face of the 3D
volume. As seen earlier, ImAxes [129] allowed users to build
their own multi-dimensional data representation. Grabbing,
moving and releasing the relative positions of axes with a
VR controller changed the representation, for instance, from
2D scatterplot to parallel axes. Meiguins et al. [107] allowed
the users of their mobile AR system for multi-dimensional
data analysis to generate histograms or pie charts to be
displayed in conjunction with a 3D scatterplot. To do so,
the user could interact with a virtual menu by occluding
buttons with his hand, selecting the type of the additional
graph, as well as the attribute to be visualized.

4.6 Filter

Filters determine exclusion or inclusion criteria for visual-
ization elements. Filtering interactions can be done directly
on the visualization, or by manipulating an abstract layer.
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Direct selection. Filtering elements can be the direct re-
sult of a selection action. The virtual data visualizer [39], the
cosmic explorer [139], as well as the system of De Haan et
al. [36], [140] triggered a filtering action upon box selection
completion, hiding any datapoint outside of the box. Slicing
of the 3D model is often allowed in medical imaging. In
Zhang et al.’s system [128] the slice position was determined
by the displacement of the wand while pressing a button,
resulting in hiding the 3D model parts outside of the slice.
Laviola Jr et al. CFD’s system [34] allowed the removal
of any particle injector, hence the related datapoints, by
placing the data glove near it and using the voice command
“remove”.

Abstract layer. Menus can be used to filter objects with-
out prior selection. VFIVE [82] and I-flight [94] both used a
3D raycasting menu selection to toggle the display of tra-
jectories based on categorical attributes. NeuroCave [65] of-
fered a similar functionality with a classical 2D WIMP inter-
face on the supportive 2D display. Genome3DExplorer [115]
offered to filter visual elements such as nodes, edges, or
labels through voice commands (“hide nodes” or “show
labels”). IDEA [75] displayed a menu on top of a physical
tablet attached to a roller chair, bringing haptic feedback
to menu selection. The query was then materialized by a
“selection cube” that could be activated or deactivated at
will to filter data. Jackson et al. [134] proposed a tangible
controller for their visualization of thin fiber structures, with
the form of a long thin cylinder made from rolled paper.
The 3D orientation of the cylinder allowed the filtering out
of any fiber not sharing the same orientation based on a
user-defined angle threshold. The Interactive Slice WIM [64]
allowed the definition of a complex hull on a 2D slice with
a multi-touch screen and any streamline going through it
was made apparent. Last, Hurter et al. [148] proposed to
link the filter threshold for a numerical attribute directly
to the user body position in a room. Therefore, they used
one dimension of the room as a slider and its position was
determined by the user’s physical position.

4.7 Aggregate, Annotate, Import, Derive and Record

All remaining low-level interaction tasks are regrouped
here, since they are far less common in IA literature.

The Aggregate task covers interactions that change the
granularity of visualization elements. Hurter et al. [148]
employed an edge bundling technique for their 2D graph
visualization using the Microsoft HoloLens. The users could
change the force coefficient of the edge bundling algorithm
from weak to strong by moving their bodies in the room
over a virtual line.

The Annotate task covers interactions allowing users to
add graphical or textual annotations to the visualization.
The network visualization system BuesnoSDIAS [149] pro-
posed to associate text notes to selected elements, nodes or
edges, by integrating a physical keyboard into the virtual
world. TaggerVR [150] allowed users to select slices of one of
the views, and associate some predefined tags to it through
hand gestures captured via LeapMotion.

The Import task covers the addition or the replacement
of data elements from new data sources. The archaeological
VITA system [42] allowed users to import 3D models of a

discovered artifact by grabbing them out of a 2D screen,
directly putting data gloves in contact with the 2D screen
and performing a closing fist motion. NeuroCave [65] let the
user switch datasets from within the HMD, but no further
details were given.

The Derive task covers the computation of new data
elements from already available data. No paper in our
corpus referred to such interactions.

The Record task covers interactions designed to capture
visualization elements, or interaction logs. Undo actions
were available in the virtual data vizualizer [39] through 3D
menu raycasting selection. VR-Gobi [29] used an equivalent
menu to save the visualization state, color, shape, and size
of each glyph in a text file. Drouhard et al.’s system [151],
[152] allowed users to save their current positions and
orientations in the virtual world, also in a text file. However,
no detail was provided on how the IA system state could be
loaded from such files. Last, Laviola Jr et al. [34] proposed
to record a snapshot and a video of the visualization with
voice commands, respectively using “remember this view”
and “recording”. The saved view could then be accessed
through the voice command “show me the saved view”
and the video with the voice command “playback”. One
limitation was that only the last recording could be accessed.

4.8 Discussion

Two interaction modalities dominate: raycast selection with
a controller and virtual tool metaphor. raycast selection
is an attempt to convert the classical mouse pointing of
2D interfaces to a 3D world and provides the advantage
of not limiting the distance at which the user interacts,
even though the farther the object is, the harder it is to
point at it. The virtual tool metaphor aims to emulate the
“natural” interactions of humans in daily life, by using
tools to perform specific actions. Though IA is defined
as a multi-modal experience by Chandler et al. [1], other
interaction modalities are under-represented, for instance,
only a few systems make use of speech. Also, there is a
lack of guidelines and best practices for interaction in IA.
However, this may be changing, as illustrated by two recent
works: Badam et al. [155] proposed an affordance table
of interaction modalities for low-level tasks, and there is
a whole chapter dedicated to interaction [156] in the IA
Book published in 2018 [157], where the interested reader
may find valuable resources for IA system design. This
leads us to an important conclusion for IA research: so
far only basic interactions have been used in IA systems,
while VR, AR and 3DUI community literature is full of
innovative means to perform 3D interactions, together with
best practices. Such knowledge would most likely benefit IA
systems design.

A few remarks can be added. First, navigation design
needs to consider cyber-sickness [149]. IA systems are meant
to be used for extended periods of time, and user comfort is
very important [158]. However, such comfort is often over-
looked in papers, even when smooth locomotion is used.
Second, IA allows large scale data worlds to be explored
but context aware navigation techniques such as WIM are
not exploited enough even though they are critical for the
user [41]. And last, IA systems tend to overlook supportive
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low-level tasks, i.e. aggregate, annotate, import, derive, and
record, which nevertheless continue to be needed if fully-
fledged data analysis systems are to be built.

5 COLLABORATION IN IMMERSIVE ANALYTICS

Collaborative Immersive Analytics (CIA) is defined as ”the
shared use of immersive interaction and display technolo-
gies by more than one person for supporting collaborative
analytical reasoning and decision making” in the CIA sec-
tion of [159]. This section discusses the collaboration-related
features of the 15 CIA systems in our corpus, it can serve as
an IA system-oriented prologue to [159]. We describe how
users interact with each other, focusing first on systems that
allow physical interaction, and then on those that use virtual
representations of users. We chose this presentation over the
usual same vs. different place categorization because IA sys-
tems bring additional complexity: users can be in the same
physical space, but have different virtual representations, or
on the contrary be in different physical spaces but within
the same virtual environment.

5.1 Physical Collaboration

Physical collaboration in IA started by placing multiple
users in the same room using the same virtual reality
technology, e.g. multiple users in front of a Fishtank [71],
a workbench [33], [81], or inside a CAVE [128]. This has the
advantage of letting users interact naturally, but presents
the major drawback of providing a correct representation of
the virtual world only for the head-tracked user. Gestural
communication is also impacted since finger pointing to
show a point of interest cannot work in this context. One
solution proposed by [128] is to use a controller to project a
raycast for finger pointing. Another solution is to head track
multiple users as seen earlier for Agrawala et al. [37] work-
bench. The new generation of CAVE was designed from
the beginning for CIA [27]. For instance, CAVE2 was built
to allow any collaborator to share flawlessly individually
owned data with the group by displaying it either through
classical 2D representations or via the immersive envi-
ronment. CAVE2 offers the possibility to visualize mixed
views, where a part of the screen is dedicated to immersive
representations and the other to 2D ones. Such choice to
decrease immersion was made to improve collaboration
because, according to the authors, it is “at best extremely
difficult to integrate multiple useful representations into the
same virtual world” and “multiple representations can often
be better than a single shared representation” [160].

Augmented reality technology has also been used to pro-
vide physical collaborative IA. In 2004, VITA [42] allowed
multiple archaeologists to enter the same virtual represen-
tation of an excavation site in AR. Users reported enjoying
the interaction with their colleagues in a direct manner, but
stated that the AR glasses were hiding the collaborator’s
eyes causing a discomfort in the interaction. In their system
to prevent maritime smuggling, Franz et al. [55] used the
Microsoft HoloLens combined with a tangible map of the
shore. This representation allowed all the users to share
the same position of entities, allowing quick finger pointing
gestures to share objects or potential movement strategies,

while allowing each user the freedom to have individual
additional information displayed on the headsets. Butscher
et al. [110] proposed a similar solution, using a touch table
as the central point of representation, and a headset for each
user: the same virtual world was shared among all users
and all interactions were done using the multi-touch table.

Last, the principle of “datatar” has been presented by
Chen et al. [16] as a combination of the words “data”
and “avatar”. Each user/datatar embodied one tuple of a
multi-dimensional dataset and had to collaborate with other
datatars to solve dimension reduction problems.

5.2 Virtual Collaboration
Virtual collaboration gathers users from different physical
places who are connected to the same IA session through
various hardware. The earliest work was the distributed
virtual windtunnel in 1992 [21]. Two users could connect
to the same representation of CFD simulation, each using
a BOOM. The system allowed users to leave or join the
session at any time. Conflicts were solved on a first come
first serve basis, preventing, for example, users moving the
same particle injector at the same time. The CAVE6D [88],
[89] and the TIDE [131] systems allowed connection be-
tween CAVE and workbench users. Both proposals focused
on interdisciplinary analysis of oceanographic and climate
data. Users communicated directly via a voice chat and
with gestures. Each user was represented by a simple avatar
composed of a head and a hand, both following the tracked
user’s movements. A raycast was attached to the user’s
hand to facilitate pinpointing locations. A characteristic of
the CAVE6D was the ability to let each user filter parameters
either locally, affecting only his visualization, or globally,
affecting everyone’s visualization. This led to positive feed-
back from users, since they were able to investigate the
data without disturbing their collaborators before sharing
it with them. Cordeil et al. [93] used HMDs in their plane
trajectory analysis system to connect users to the same
virtual world. Leap Motion was used to provide virtual
avatars with complete hands, letting users compose with
a broader freedom for non-verbal communication.

Last, MICA (Meta-Institute for Computational Astro-
physics) experimented with the Second Life social virtual
world as a way to connect people for data analysis [15], e.g.
the analysis of the output of a dynamical simulation of a
star cluster. The main goal was to see the impact of “virtual
environment as an educational and outreach platform”, and
the platform could be used without any requirement other
than a Second Life account. Feedback from users was highly
positive but it was not enough to ensure their return on a
regular basis.

5.3 Discussion
We have two main conclusions. First, only fifteen papers
out of the one hundred and twenty-seven system papers in
our corpus have focus on collaboration, which represents
less than 12% though collaboration is defined as a critical
component for the success of IA [161], [162]. Second, no
asynchronous collaborative system is mentioned, leaving a
whole area unexplored. This point may be explained by a
lack of attention to low-level interaction tasks required for
asynchronous collaboration, such as annotate and record.
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6 IMMERSIVE ANALYTICS USER STUDIES

The second main category of papers in our corpus is related
to evaluation. Twenty-eight papers focus on IA systems
evaluation, twenty-six compare IA and non-IA solutions,
and fourteen compare technologies (5), interactions solu-
tions (7), or representations (2) within the same IA system.
This section is organized along this subdivision.

6.1 Evaluating IA systems
The most common way to evaluate an IA system in our
corpus is by gathering feedback from users while or after
they have used the system. In general, domain expert users
participated in the studies when available.

Twelve papers used an informal evaluation approach
where final users were invited to use the system. In some
cases they had participated in the design process. Krüger et
al. [33] asked doctors, engineers and architects to validate
their initial concept of the responsive workbench, obtaining
suggestions for improvements, such as adding haptic feed-
back for the medical application, or increasing resolution
for the industrial one. The virtual data virtualizer was
used by computational physicists and the VR depiction was
considered more “real and immediate” than a workstation
display [39]. Ai et al. [80] received positive feedback for their
molecule analysis system, which was deemed to be close to
using real plastic models. Zhang et al. [128] had positive
comments from doctors and senior medical students about
the ease of use of their system. Hentschel et al. system [85]
collected user feedback to define the type of visualization
needed for blood damage analysis. The Bema system [135]
was used by an ancient Greek rhetoric and oratory scholar
to obtain insights into political assemblies at the Pnyx. This
specialist stated that his experience had given him “a lot of
confidence in what this [showed]” compared to using his
imagination, or pictures. VR Miner [106] was used by bio-
statisticians and dermatologists who appreciated its features
for detecting correlations between skin photographs and
other data dimensions, checking the quality of discovered
clusters, and presenting the data to a panel of experts. Using
the CAVE2, experts expressed that it allowed them to get
“more done in 2 days than in 6 months of email, Skype, and
Google Hangout” [160]. GBR Tour [54] received feedback
about the lack of resolution of their system and the need to
improve navigation. Ferey et al. [115] genomic database IA
system was used by biologists but they give no precision
on the gathered feedback. Cunningham et al. [96] invited
three experts to use their visualization of law enforcement
narratives. The think aloud feedback they collected showed,
for instance, that “the visualization was not as crowded in
VR...and much more understandable” than usual tools. An
informal evaluation approach with non-domain expert users
was also used, e.g. [34] gathered feedback from “a number
of people” who said that voice command was great but gets
annoying when commands are not recognized, especially in
a noisy environment. Ready et al. [95] enrolled people from
their laboratory that had never seen their system before, the
feedback was that it was not intuitive initially, but became
great to use after some training and explanation.

Twelve papers used a formal evaluation approach, with
dedicated sessions, seven of them with domain expert users.

Sessions all had the same structure: system introduction,
training on the main features of the system, a set of tasks
to be performed, and questionnaire and/or interview. How-
ever, the evaluation objectives differed between studies,
leading to different tasks. When expert users were available,
the objective was to determine the usefulness of the system
for data analysis, so experts had the freedom to explore
interaction and analyze data as they saw fit. For instance,
ARCHAVE was evaluated by two groups of archaeologists,
the first one willing to analyze the lamp finds in the Petra
temple, while the second wanted to explore the relation
between the temple and the neighboring ancient sites [66],
[67]. For the formal evaluation of the VITA system, archae-
ologists were asked what they intended to investigate prior
to the evaluation session, and the tasks were designed ac-
cordingly [42]. Helbig et al. [101], Cantu et al. [77], Butscher
et al. [110] and Hurter et al. [98] also let users freely use
their IA system. When evaluation was conducted with non-
expert users, the goal was to evaluate the usability of the
interactions. In this case the choice was made to guide users
who had no experience in the dataset by precisely defining
the tasks to perform, such as in the Wizard [41], Interactive
Slice WIM [64], ExplorViz [125], IDEA [75], and Saalfeld et
al.’s [69] systems’ evaluations.

Three systems succeeded in reaching the milestone of
being used in real work environments. The Dragon system
was used during two training military operations: “the
Hunter Warrior advanced warfighting experiment in March
1997 and the Joint Counter Mine advanced concept tactical
demonstration in August and September 1997” [35]. The
ArtifactVis2 was extensively used to analyze an Iron Age
site in Southern Jordan during the entire duration of the
excavation project [68]. Jackson et al. system [134] was
“used [...] in their lab” by the two biophotonic experts that
collaborated in its development.

Our last system evaluation paper is more difficult to
categorise. Fuhrmann et al. [40] make strong claims about
their AR system, such as enhanced interaction capabilities
or reduced abstraction, but provide no details of their eval-
uation or how such conclusions have been reached.

6.2 Questioning the benefits of immersion
The potential benefits of IA over non-immersive solutions
appear to be dependent of data types. We will successively
focus on graph, multi-dimensional, and spatial data. Let
us state that there was no evaluation paper in our corpus
directly comparing immersive and non-immersive solutions
for temporal, spatio-temporal, or tree data. A summary of
the findings can be found in table 3.

Graphs. 3D representations have long been disregarded
in the graph community, as it was considered they had sig-
nificant problems mainly due to perceptive and navigational
conflicts when exploring 3D worlds using 2D interfaces
and screens [163]. Immersive environments were also disre-
garded for the same reason. It can, however, be argued that
IE provide very different experiences by offering their users
“true” 3D together with embodied interaction, and that it is,
therefore, not possible to apply previous conclusions to IE
systems [158].

Ware et al. [32], [164], [165] consistently proved the bene-
fits of IA systems for network visualization. They performed
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multiple user studies comparing 2D with 3D stereo, simple
head-tracking, or both combined (FishTank) visualizations.
For instance, users were asked to determine if a path of
length 2 was connecting two highlighted nodes, for varying
graph sizes (24 to 132 nodes). The results showed that the
error rates were proportional to the number of nodes. The
FishTank could display three times the number of nodes of
the 2D solution before reaching the same error rate, while
head tracking alone brought this number down to 2.2 and
stereo alone to 1.6. In 2008, a new study used the same
principles [166]: the resolution of the screen was brought
up to 9.2 million pixels per eye to display image “at the
limit of the resolution of the human eye”. Four graph-size
conditions were considered: 33, 100, 333 and 1000 nodes.
The results showed that non-experienced users were able
to achieve a 92% accuracy using IA with the 333 nodes
condition, while experts achieved 90% accuracy for 1000
nodes. Similar accuracy was only reached by non-experts
in 2D with 33 nodes. Belcher et al. [114] used the same
protocol as the early Ware’s studies, i.e. same tasks and 21
to 75 nodes. The main difference in their study was that
they compared 2D, 3D and AR solutions (the graph was
displayed on top of a disk with a fiducial marker). AR
and 3D solutions proved significantly more accurate, but
this result must be mitigated since the 2D solution was a
projection of the 3D solution with no possibility to rotate
the graph, while it was possible in the two other conditions.
Greffard et al. [167] compared 2D with 3D stereo, with
no head tracking, for node/link representation, resulting
in the 2D solution being better for simple graph but 3D
stereo being better for complex graph. Samavati et al. [168]
compared a wall (no stereo, no head-tracking) to a CAVE-
4 wall for multiple tasks such as intersection search, path
following, connection identification, and length compari-
son. The results showed significantly greater accuracy for
intersection search and connection identification for the IA
solution, but no difference for length comparison tasks.

Multi-dimensional data. 3D representations have been
explored very early, but most researchers have long disre-
garded the use of 3D, considering that 2D conventional tech-
niques were sufficient for typical tasks related to pattern,
trend, or outlier discovery [169]. Immersive technologies,
however, bring in a new type of 3D together with embodied
interactions which is worth exploring.

Wickens et al. [170] compared 2D and 3D scatterplotting
in 1994, using a 3D stereo screen, resulting in better accu-
racy and completion times for 3D scatterplots for complex
questions such as “which datapoints have the highest value
on all 3 variables?”. However, it is important to note that the
dataset only consisted of 8 points. X-gobi, a desktop system,
and VR-Gobi, a CAVE system, aimed at analyzing multi-
dimensional data with 2D or 3D scatterplots and grand
tour technique (permanent revolution of the representation
around a vertical axis [171]) have been compared in [29],
[172]. VR-Gobi showed significantly better accuracy for
cluster identification tasks on datasets ranging from 74 to
500 tuples. Raja et al. [173] compared multiple systems for
3D scatterplot representation using FOR (Field of Regard)
and HT (Head-Tracking) as independent variables. Tasks
covered search, cluster, outlier, and trend detection. The
combination of higher FOR and HT significantly diminished

completion times. Another study focused on the impact
of FOR: Yost et al. [133] compared a 2Mp with a 32Mp
screen for search and trend determination tasks using a
multi-view representation. Each view kept the same scale
in both conditions, therefore the 32Mp condition displayed
an enhanced number of views. Increasing the dataset size by
a factor of 20, both in dimensions and tuples, for the higher
FOR condition, i.e. 32Mp screen, resulted only in a three
times increase in completion time with no significant effect
on accuracy. Filho et al. [174] compared two dimensionally-
reduced data scatterplot representations (2D on a screen, 3D
in a VR HMD) for the analysis of the original dataset with
search and outlier discovery tasks. Result showed that IA
was both the most accurate and the most engaging, while
desktop remained the fastest and the most intuitive. These
results show that IA may be beneficial even for abstract
visualization. Last, Bach et al. [175] compared Microsoft
Hololens AR, tablet AR, and desktop for the analysis of
dense 3D scatterplots. The tablet was the worst performing
solution for all tasks, and participants agreed. For distance
evaluation tasks, desktop was faster than HoloLens with no
impact on accuracy. For cluster identification and selection
tasks, desktop was the fastest but HoloLens was the most
accurate. For plane cutting tasks, HoloLens was the fastest
and hinted on a better accuracy than desktop. Participants
preferred desktop for manipulation and the HoloLens for
perception.

Spatial data naturally benefits from 3D representations
as it is inherently 3D. Therefore, the main question is to
explore what benefits immersive 3D can bring over 3D
displayed on 2D screens.

The earliest user study on spatial data in our corpus
was from Gruchalla et al. in 2004 [176]. The study com-
pared users trying to position an oil well over an oil field
using either a 2D desktop or a CAVE. CAVE proved to be
significantly faster and more accurate. Similar results were
found in the inspection of underground caves: Schuchardt
et al. [177] found that for detailed search tasks (identify
cave connection), or relative measurement tasks (compare
the sizes of caves), CAVE performed significantly faster and
more accurately than 2D. Focusing on the same type of
data, Ragan et al. [178] went a step further, considering field
of regard (FOR, total area available to the user to see the
representation), stereo (ST), and head tracking (HT) as inde-
pendent variables. FOR was controlled by using 1 or 4 CAVE
walls, while ST and HT were turned on and off. FOR and
HT combined improved accuracy, while the combination
of HT and ST improved completion time. Van Schooten et
al [179] used stereo and motion as independent variables for
a study on maze structure data representation. Participants
had to follow one particular path through the maze. Motion
was simply the ability to control the panning and rotation
of the representation, it proved to significantly increase
the completion speed. Interestingly stereo provided benefits
over non-stereo only when associated to motion. Ragan et
al. [180] also used an underground cave system for their
study, with multiple attributes being displayed throughout
the cave (e.g. ground density with 3D bar charts). They
compared a high-fidelity (CAVE 4-wall with ST and HT)
setup with a low fidelity (CAVE 1-wall, no ST, no HT) one.
The task was to find the highest value of a component inside
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the cave, the high fidelity condition was the fastest and
the most accurate. For medical imaging, Laha et al. [181],
[182] showed that FOR and HT improved accuracy but did
not find significant effects for completion time. In addition,
Prabhat et al. [183] obtained better accuracy for CAVE
over 2D-desktop for confocal microscopy data analysis. One
study did not demonstrate the benefit of immersive solution
for spatial data [184]. However, only two sizes of screens
and ST were investigated, and HT was not available despite
its critical importance for IA.

To conclude, there seems to be concurring evidence that
IA provides benefits over non-IA for the analysis of graph
and spatial data when the complexity of the scene exceeds
the limits of 2D displays. Results for multi-dimensional data
are more mitigated depending on the tasks.

6.3 Assessing technologies, interaction or visualiza-
tion techniques

Technology. The availability of numerous immersive tech-
nologies has led researchers to try and determine which
were better suited for IA, especially when some of them,
like the CAVE, are a lot more expensive than others. De-
milrap et al. [185] compared a FishTank with a CAVE for
visual search tasks in a stream tube representation of the
human brain. FishTank was significantly faster and more
accurate and users reported their preference for its increased
brightness and resolution. However, the full model was
always visible on the screen in the two conditions so as to
lower the impact of the limited FOR of FishTank due to its
small screen. Qi et al. [73] compared a FishTank with an
HMD for an overview visual search task in volumetric data.
FishTank was also found to be significantly faster and more
accurate. However, users were placed inside the volume to
be investigated when using HMD, while in Fishtank they
had an overview, all tasks being related to the investigation
of the full volume. Laha et al. [186] compared a HMD with
a CAVE to determine if both led to the same results for
volume data analysis, hence allowing previous conclusions
drawn with CAVE to be applied to HMD. The absence of
significant differences is a step towards the validation of this
hypothesis. Cordeil et al. [187] compared the benefit of their
CAVE2 solution with a VR HMD for collaborative analysis
of graph data to see if the added cost of the CAVE2 was
justified. The tasks were simple, such as finding the shortest
path between two nodes, or counting the number of nodes.
Both conditions led to similar accuracy and completion
times. Last, Merino et al. [188] compared a city metaphor
for software visualization that could be experienced in a
VR HMD or with a 3D printed representation. Finding the
outliers proved to be faster with the printed representation,
but the immersive environment was significantly better for
recollection of the insights.

Interaction. Studies in comparing navigation techniques
for IA systems have also been conducted. Henry et al. [116]
compared egocentric (flying metaphor, see 4.1) and allocen-
tric (rotating the visualization) navigations techniques for
a node/link representation displayed in a CAVE, with no
conclusive result. Simpson et al. [189] conducted a sim-
ilar experiment in an HMD for the analysis of 3D scat-
terplots, comparing egocentric (walking physically around

the visualization) to allocentric (rotating the visualization)
navigation for a 3D scatterplot. No significant differences
were found in either, as success was mostly driven by user
preferences, even though users with low spatial abilities
performed better in the walking condition. Another study
from Buschel et al. [190] compared egocentric and allo-
centric navigations by either moving physically around an
augmented reality representation on a tablet or by moving
it by touching the tablet. No conclusive result could be
found from quantitative data but participants preferred the
egocentric solution. The egocentric vs allocentric navigation
comparison from Coffey et al. [64] had a small difference:
egocentric navigation could be user controlled or auto-
matically animated with no user control. The controlled
navigation was the most accurate while the animated one
was the fastest. Zielasko et al. [117] compared five types of
navigations while using an HMD in a seated position at a
desk: gamepad, shake your head (SYH), leaning, walking
in place (WIP) and pedal. Walking metaphor, i.e. SYH and
WIP, were significantly slower than the others. Drogemuller
et al. [191] compared four different navigation techniques
for graph analysis using a VR HMD while standing up: tele-
portation, one handed flying, two-handed flying and world-
in-miniature (WIM). Two-handed flying was the fastest and
most preferred solution for tasks purely based on naviga-
tion, but WIM was the most efficient solution for tasks that
required an overview of the scene, as it helped users keep
the context in sight.

One paper [145] studied the impact of two different in-
put modalities for the Arrange low-level task in a node/link
representation on a stereo screen: participants could move
nodes and edges with gesture-based interaction or classical
3D mouse. Quantitative results showed no impact on accu-
racy but for the most complex graph the gesture condition
was significantly faster. Qualitative results indicated a sig-
nificant preference for gesture-based interaction.

Visualization. Two papers focused in 2018 on compar-
ing visualization techniques within IA systems. Fonnet et
al. [192] compared three representations of a cartesian co-
ordinate system for 3D scatterplots: 2D grid, 3D grid, and a
metaphoric representation of an apartment hall. Participants
had to find the coordinate values of highlighted points.
No significant result was found for accuracy, but some
users changed their behavior in the hall: they began to use
their arms to measure distances. Yang et al. [97] compared
various representations of trajectories over a 2D map: 2D
straight lines, 2D curved lines and 3D curved lines. The
task was to define which trajectory was the longest for
selected trajectories. 3D curved lines ended up being the
most accurate solution, 2D straight lines being the fastest.

6.4 Discussion
First, IA system evaluation is not systematic in our corpus:
only 22% of the papers describing a system also describe
its evaluation. Also, higher system fidelity, i.e. higher FOR,
using ST, or HT, seems to bring benefits with regard to
accuracy for complex tasks, especially for graph and spatial
data, cf. table 3. For completion times, however, results
are more uncertain. System fidelity studies are also lacking
when it comes to other data types such as temporal, spatio-
temporal, or tree data. In addition, we only found a recent
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Data Type Measure Better than non-immersive Worse than non-immersive
[176] : big FOR+ST+HT
[177] : big FOR+ST+HT (detailed feature search & relative measurement)
[183] : big FOR+ST+HT
[184] : big FOR
[181] : big FOR
[182] : big FOR

acc

[178] : big FOR, HT
[176] : big FOR+ST+HT [184] : big FOR, ST
[177] : big FOR+ST+HT (detailed feature search & relative measurement)
[178] : ST+HT

Spatial

time

[179] : ST
accTemporal time
accSpatio-Temporal time

[29] : big FOR+ST+HT (clustering & radial sparness) [175] : ST
[172] : big FOR+ST+HT (clustering & radial sparness)
[174] : ST+HTacc

[170] : ST (if question involve 3 or more attributes)
[133] : big FOR [174] : ST+HT

Multi-Dimensional

time [175] : ST+HT, ST
[32] : ST [167] : ST (for small graphs)
[164] : ST+HT, HT, ST
[165] : ST+HT
[114] : ST+HT, ST
[166] : ST
[168] : big FOR+ST+HT

acc

[167] : ST (for large graphs)
[168] : big For+ST+HT [114] : ST+HT

Graph

time [167] : ST
accTree time

TABLE 3: Recapitulative table of the benefits of immersive solutions compared to non-immersive ones. Significant results
are organized by data types and quantitative measures: accuracy (acc) and completion time (time). FOR: Field of Regard,

ST: stereoscopy, HT: head tracking.

study comparing different visual mappings [97], a fact that
may explain the apparent lack of best practices for data
representation in IE. Also, user studies on interaction modal-
ities have been limited to navigation tasks, with the only
exception being [145]. This may appear too limited as, if real
immersive data analysis systems are to be built, user studies
need to cover most of the low-level tasks we reviewed in
Section 4. An explanation for this limitation may be that the
topic is already covered in general VR papers; however, we
could argue that the specific tasks related to data analysis
require specific ways of interacting.

7 HISTORICAL SUMMARY AND CHALLENGES

We conclude this survey with an historical summary of the
development of IA from its beginning in 1991 until today,
and a presentation of three main challenges. They complete
the discussions we have provided in each section.

7.1 Historical Summary
Immersive Analytics began in the research teams that were
building immersive technologies: Bryson’s team for the
BOOM, Cruz Neira’s for the CAVE, Ware’s for the FishTank
VR, and Kruger’s for the responsive workbench. During the
late nineties, they were joined by other researchers when
immersive technology started to be adopted by other labo-
ratories. However, its huge costs drove the use of data that
was directly related to the funding sources, leading mostly
to scientific visualization systems, e.g. CFD, chemistry, and

climatology. At the beginning of the century, technology
remained heavily biased towards the CAVE, but application
domains became more diverse, with software visualization,
archeology, visual data mining, or brain analysis. “Canoni-
cal visualizations” began to emerge in a few domains, such
as city metaphors for software visualization, the use of 3D
vector fields with isosurfaces for climatology, particle injec-
tors into a 3D vector fields for CFD, or 3D scatterplots for
visual data mining. The next decade saw new generations of
technologies: second generation of CAVE more focused on
collaboration than immersion (CAVE2 and the Reality deck);
cheap VR HMD associated to easy ways to develop content
(Unity3D) that allowed many labs to join the IA movement;
and a new generation of HMD AR devices renewing the
interest for AR IA after only a few attempts [40], [42], [107],
[124]. This wide variety of both fast-evolving technologies
and application domains may explain the small number of
IA software framework proposals3, since these would have
been useful only to a small amount of people and very
quickly become obsolete.

Control input devices did not greatly evolve, six degrees
of freedom controllers remain as the universal solution, even

3. For computational fluid dynamics, [193] proposed a framework
offering streamline or isosurface representations that allowed any in-
teraction hardware to be added, Vista FlowLib [83] focused on high
performance rendering and parallel computing. The GEOMI frame-
work [194] was dedicated to network data analysis, it provided numer-
ous representations, and a high-level plug-in for immersive interaction.
More recently, [162] proposed a general architecture for a number of
distributed users to analyze data in a collaborative way.
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if their shapes have varied a great deal between wands,
stylus, VR gamepads, or tracked gloves. This has led to two
main ways of interacting with IA systems, either raycast
menu selection, or virtual tools metaphor where objects
may be grabbed with controllers. However, only a few low-
level interaction tasks have been targeted, and a lot are
still missing, such as import, derive, annotate, record, and
aggregate. It should also be noted that collaboration has
always been considered important since the beginning of
IA research, the first IA collaborative system appearing in
1992. However, as seen earlier, a striking fact is that only
synchronous collaboration has been considered so far.

Despite these three decades of research, IA has long
lacked unity as a research area. As shown by the evaluation
papers in our corpus, researchers have mainly focused on
justifying the value of their systems with respect to non-
immersive ones (from Ware in 1993 [32] to the present
day [174]), rather than evaluating as a community what
the best representations or interaction techniques could
be. The first definition of IA was proposed in 2015 [1],
as a tentative to provide a unifying label around the use
of “emerging user-interface technologies for creating more
engaging and immersive experiences”. Three years later,
the second definition [2] focused on “the use of engaging,
embodied analysis tools to support data understanding and
decision making”, shifting the core of IA from technology to
embodied analysis.

7.2 Challenges

In this survey, we focused on immersive technology, with
an embodied stance related to our head-tracking condition.
We identified three main challenges for IA to develop as a
unified research area.

Foster multi-sensory and embodied interactive IA. Im-
mersive environments provide the unique benefit of having
fully immersed users, and the full potential of IA may
not have been discovered yet. This calls both for new
representations that engage all the senses of the users, and
new interaction paradigms that exploit full body immersion
to its full extent. First, most data representations focus
on the visual channel, with a lack of proposals making
use of sound and/or haptics. Also, many of the 3D data
representations proposals are extensions of 2D ones. All
those representations have proved useful but are likely not
to be the only possibilities in IE. Second, IA researchers
may not have experimented sufficiently with interaction:
most interactions focus on six DoF controllers that are either
used for raycast selection over virtual menu, or to grab
virtual tools. There is, however, no reason to limit to these
types of interactions or controllers. As an example, single-
object selection may not only rely on simple raycast, and
may benefit from the rich literature from VR and gaming
community [195], [196]. As a matter of fact, taking into
account 3DUI and VR findings [197] seems mandatory to
fully integrate the embodied interaction paradigm to the IA
field. An interesting example is ImAxes [129], which allows
users to create new representations by simply empowering
them with the control of axis arrangement.

Converge towards best practices. Work on IA began
three decades ago, but the unifying term ”Immersive Ana-

lytics” was only proposed three years ago. Access to immer-
sive technology has long been limited to a few teams, as well
as exchanges between a small number of experts of different
types of systems, resulting in a lack of acknowledged best
practices. To reach such goal it seems to us that work must
be largely shared, and by this we mean sharing the actual
users’ experiences. Indeed, research usually mainly focuses
on sharing knowledge through words and images but this
may be insufficient for IA [198]. As for any immersive
system, IA systems must be experienced for peers to be able
to understand their full extent, which calls for open sourcing
IA systems (as did ImAxes [199]) or toolkits (such as the
recent DXR [200] and IATK [201]), or at least sharing 3D
videos of experiences. Another point is that only fourteen
papers in our corpus focused on assessing best solutions
for IA (section 6.3), and comparing rendering technologies
or navigation techniques have been the only two focus
points for over 20 years. Data representation as a whole,
as well as low-level interaction tasks (with the exception of
navigation) were not investigated in any of the evaluation
papers in our corpus until 2017. This means that a large part
of the IA’s area is yet to be explored and defined, and that
an alternative route to reach maturity is to systematically
aim at evaluating and assessing the validity of IA systems
components for representation, interaction, etc.

Aim at real life IA systems. Data analysis having
become a major industry concern, combined with the fact
that VR/AR technologies are entering the corporate world,
might lead to a new interest in enterprise IA systems4.
Therefore, it seems important for IA researchers to focus on
real life scenarios for systems they build. This means, as we
have already seen, that these must integrate the full package
of low-level interaction tasks defined by [18]. Inspiration
can come from other fields, such as the use of annotation
in immersive environments for 3D CAD models, leading to
the possibility of asynchronous collaboration [203], [204].
Additional considerations for the design of IA systems are
also required, related to their integration in the workplace
and in the workflows of data analysts. This calls for research
on user comfort and session durations, interoperability of
2D and immersive applications, transitions between cor-
porate and immersive worlds, etc. Such conclusions are
in line with those proposed by Wernert et al. [205] for
the ”immersive visualization community”. This also calls
for interdisciplinary work between IA, design, workplace
and cognitive ergonomics, CSCW, sociology of organization,
etc. [206] as well as partnership with industry [207].

8 CONCLUSION

We presented a survey of Immersive Analytics, as it emerges
from the study of an extensive corpus covering three
decades. We described one hundred and twenty seven IA
systems focusing on their technologies, usages, sensory
mappings, low-level interactions tasks, and collaborative ca-
pacities. A companion website is available where each sys-
tem is systematically described and illustrated. The second
part of the paper was dedicated to evaluation in Immersive
Analytics, as well as a discussion of the main challenges.

4. Well-funded start-ups have begun to appear [202]
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Yannick Prié holds an Engineering Degree in Computer Science, a
Master’s degree in Artificial intelligence and Cognitive science, and a
PhD in Computer Science. He is currently a Professor of Computer
Science at Nantes University. His research interests include Human-
Computer Interaction, Information Visualization, and User experience,
with a focus on interdisciplinary approaches for the study of human-
machine coupling and co-development.


